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We shall not attempt the solution of these equations at this time. It is
worthwhile pointing out, however, that when the two voltage forcing func-
tions are sinusoidal functions of time it will be possible to define a voltage-
current ratio (called impedance) or a current-voltage ratio (called admit-
tance) for each of the three passive elements. The factors operating on the
two node voltages in the equations above will then become simple multiply-
ing factors, and the equations will be linear algebraic equations once again.
These we may solve by determinants or a simple elimination of variables as
before.

Drill Problem

Fig. 4-19: See Drill Prob.
4-6.

4-6. (a) Find L., in Fig. 4-19a. (b) Find C,, in Fig. 4-19b. (c) Find i, in Fig.
4-19c¢ if i, = 0.03 sin 50007 A.  Ans: 2.62 H; 6.91 uF; 0.015 sin 5000z A
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4-6
Duality

Duality has been mentioned earlier in connection with resistive circuits and
more recently in the discussion of inductance and capacitance; the com-
ments made were introductory and, like the man who tried to pet the alliga-
tor, a little offhand. Now we may make an exact definition and then use the
definition to recognize or construct dual circuits and thus avoid the labor of
analyzing both a circuit and its dual.

We shall define duality in terms of the circuit equations. Two circuits are
duals if the mesh equations that characterize one of them have the same
mathematical form as the nodal equations that characterize the other. They
are said to be exact duals if each mesh equation of the one circuit is numeri-
cally identical with the corresponding nodal equation of the other; the cur-
rent and voltage variables themselves cannot be identical, of course. Duality
itself merely refers to any of the properties exhibited by dual circuits.

Let us interpret the definition and use it to construct an exact dual circuit
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Fig. 4-20: A given circuit to which the Fig. 4-21: The exact dual of the
definition of duality may be applied to circuit of Fig. 4-20.
determine the dual circuit.

by writing the two mesh equations for the circuit shown in Fig. 4-20. Two
mesh currents i; and i, are assigned, and the mesh equations are

1 dl] dlZ _
3iy+ 4 — 4— = 2 cos 6t (17
d dl] dlZ 1 £ S

It should be noted that the capacitor voltage vc is assumed to be 10 V at
t=0.

We may now construct the two equations which describe the exact dual of
the given circuit. We wish these to be nodal equations, and we thus begin by
replacing the mesh currents iy and i, in Egs. (17) and (18) by two node-to-
reference voltages v, and v,. We obtain :

dv, dv, _
3ui + 4= = 4—= =2 cos 61 (19)

dv, dv, I _
_4Tt+47t+-8—fovzdt+5v2— 10 (20)

and we now seek the circuit represented by these two nodal equations.

Let us first draw a line to represent the reference node, and then we may
establish two nodes at which the positive references for v, and v, are located.
Equation (19) indicates that a current source 2 cos 6¢ is connected between
node 1 and the reference node, oriented to provide a current entering node 1.
This equation also shows that a 3-U conductance appears between node 1
and the reference node. Turning to (20), we first consider the nonmutual
terms, or those terms which do not appear in (19), and they instruct us to
connect an 8-H inductor and a 5-U conductance (in parallel) between node 2
and the reference. The two similar terms in (19) and (20) represent a 4-F
capacitor present mutually at nodes 1 and 2; the circuit is completed by
connecting this capacitor between the two nodes. The constant term on the
right side of (20) is the value of the inductor current at ¢ = 0; thus, i; (0) =
10 A. The dual circuit is shown in Fig. 4-21; since the two sets of equations
are numerically identical, the circuits are exact duals.



Fig. 4-22: The dual of the
circuit of Fig. 4-20 is con-
structed directly from the

circuit diagram.

inductance and Capacitance 137

Dual circuits may be obtained more readily than by the above method, for
the equations need not be written. In order to construct the dual of a given
circuit, we think of the circuit in terms of its mesh equations. With each
mesh we must associate a nonreference node, and, in addition, we must
supply the reference node. On a diagram of the given circuit we therefore
place a node in the center of each mesh and supply the reference node as a
line near the diagram or a loop enclosing the diagram. Each element which
appears jointly in two meshes is a mutual element and gives rise to identical
terms, except for sign, in the two corresponding mesh equations. It must be
replaced by an element which supplies the dual term in the two correspond-
ing nodal equations. This dual element must therefore be connected directly
between the two nonreference nodes which are within the meshes in which
the given mutual element appears. The nature of the dual element itself is
easily determined; the mathematical form of the equations will be the same
only if inductance is replaced by capacitance, capacitance by inductance,
conductance by resistance, and resistance by conductance. Thus, the 4-H
inductor which is common to meshes 1 and 2 in the circuit of Fig. 4-20
appears as a 4-F capacitor connected directly between nodes 1 and 2 in the
dual circuit.

Elements which appear only in one mesh must have duals which appear
between the corresponding node and the reference node. Referring again to
Fig. 4-20, the voltage source 2 cos 6¢ V appears only in mesh 1; its dual is a
current source 2 cos 6t A which is connected only to node 1 and the refer-
ence node. Since the voltage source is clockwise-sensed, the current source
must be into-the-nonreference-node-sensed. Finally, provision must be
made for the dual of the initial voltage present across the 8-F capacitor in the
given circuit. The equations have shown us that the dual of this initial volt-
age across the capacitor is an initial current through the inductor in the dual
circuit; the numerical values are the same, and the correct sign of the initial
current may be determined most readily by considering both the initial volt-
age in the given circuit and the initial current in the dual circuit as sources.
Thus, if vc in the given circuit is treated as a source, it would appear as —v¢
on the right side of the mesh equation; in the dual circuit, treating the current
i; as a source would yield a term —iz on the right side of the nodal equation.
Since each has the same sign when treated as a source, then, if vc(0) = 10V,
ir(0) must be 10 A.

The circuit of Fig. 4-20 is repeated in Fig. 4-22, and its exact dual is
constructed on the circuit diagram itself by merely drawing the dual of each

Ref.
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Fig. 4-23: (a) The dual (in
color) of a given circuit
(in black) is constructed
on the given circuit. (b)
The dual circuit is drawn
in more conventional
form.

(@) (b)

given element between the two nodes which are centered in the two meshes
which are common to the given element. A reference node which surrounds
the given circuit may be helpful. After the dual circuit is redrawn in more
standard form, it appears as shown in Fig. 4-21.

An additional example of the construction of a dual circuit is shown in
Figs. 4-23a and b. Since no particular element values are specified, these two
circuits are duals, but not necessarily exact duals. The original circuit may
be recovered from the dual by placing a node in the center of each of the five
meshes of Fig. 4-23b and proceeding as before.

The concept of duality may also be carried over into the language by
which we describe circuit analysis or operation. One example of this was
discussed previously in Sec. 4-4, and the duals of several words appeared
there. Most of these pairs are obvious; whenever there is any question as to
the dual of a word or phrase, the dual circuit may always be drawn or
visualized and then described in similar language. For example, if we are
given a voltage source in series with a capacitor, we might wish to make the
important statement, ‘‘the voltage source causes a current to flow through
the capacitor’’; the dual statement is, ‘‘the current source causes a voltage
to exist across the inductor.”’ The dual of a less carefully worded statement,
such as, “‘the current goes round and round the series circuit,” often re-
quires a little inventiveness.>

Practice in using dual language can be obtained by reading Thévenin’s
theorem in this sense; Norton’s theorem should result.

We have spoken of dual elements, dual language, and dual circuits. What
about a dual network? Consider a resistor R and an inductor L in series. The
dual of this two-terminal network exists and is most readily obtained by
connecting some ideal source to the given network. The dual circuit is then
obtained as the dual source in parallel with a conductance G,G =R,and a
capacitance C, C = L. We consider the dual network as the two-terminal
network that is connected to the dual source; it is thus a pair of terminals
between which G and C are connected in parallel.

Before leaving the definition of duality, it should be pointed out that dual-

3 Someone has suggested, ‘‘the voltage is across all over the parallel circuit.”
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ity is defined on the basis of mesh and nodal equations. Since nonplanar
circuits cannot be described by a system of mesh equations, a circuit which
cannot be drawn in planar form does not possess a dual.

We shall use duality principally to reduce the work which we must do to
analyze the simple standard circuits. After we have analyzed the series RL
circuit, then the parallel RC circuit requires less attention, not because it is
less important, but because the analysis of the dual network is already
known. Since the analysis of some complicated circuit is not apt to be well
known, duality will usually not provide us with any quick solution.

Drill Problem

Fig. 4-24: See Drill Prob.

4-7.

4-7. Write the single mesh equation for the circuit of Fig. 4-24a and show, by
direct substitution, that i = 4¢=20%" A js a solution. Knowing this, refer to

Fig. 4-24b and find: (a) i; (b) iy. Ans: 80e72000t. —48,—2000r A
20 Q i

il iz

g e 0.055 == 6 mF

3282000t¢ 6 mH

4-7

Linearity and its
consequences
again

In the previous chapter we learned that the principle of superposition is a
necessary consequence of the linear nature of the resistive circuits which we
were analyzing. The resistive circuits are linear because the voltage-current
relationship for the resistor is linear and Kirchhoff’s laws are linear.

We now wish to show that the benefits of linearity apply to RLC circuits as
well. In accordance with our previous definition of a linear circuit, these
circuits are also linear because the voltage-current relationships for the in-
ductor and capacitor are linear relationships. For the inductor, we have

o di
v=1L Et-
and multiplication of the current by some constant K leads to a voltage
which is also greater by a factor K. In the integral formulation,

q
:Zﬁum+hm)

it can be seen that, if each term is to increase by a factor of K, then the initial
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value of the cufrent must also increase by this same factor. That is, the
factor K applies not only to the current and voltage at time ¢ but also to their
past values.

A corresponding investigation of the capacitor shows that it too is linear.
Thus, a circuit composed of independent sources, linear dependent sources,
and linear resistors, inductors, and capacitors is a linear circuit.

In this linear circuit the response is again proportional to the forcing
function. The proof of this statement is accomplished by first writing a
general system of integrodifferential equations, say, in terms of loop cur-
rents. Let us place all the terms having the form of Ri, L di/dt, and (1/C) [i dt
on the left side of each equation and keep the independent source voltages
on the right side. As a simple example, one of the equations might have the
form

t
Rl.'l‘L%‘f‘éftoidf‘i‘ Uc(t()) = Us
If every independent source is now increased by a factor K, then the right
side of each equation is greater by the factor K. Now each term on the left
side is either a linear term involving some loop current or an initial capacitor
voltage. In order to cause all the responses (loop currents) to increase by a
factor K, it is apparent that we must also increase the initial capacitor volt-
ages by a factor K. That is, we must treat the initial capacitor voltage as an
independent source voltage and increase it also by a factor K. In a similar
manner, initial inductor currents must be treated as independent source
currents in nodal analysis.

The principle of proportionality between source and response is thus ex-
tensible to the general RLC circuit, and it follows that the principle of super-
position is also applicable. It should be emphasized that initial inductor
currents and capacitor voltages must be treated as independent sources in
applying the superposition principle; each initial value must take its turn in
being rendered inactive.

Before we can apply the superposition principle to RLC circuits, however,
it is first necessary to develop methods of solving the equations describing
these circuits when only one independent source is present. At this time we
should feel convinced that a linear circuit will possess a response whose
amplitude is proportional to the amplitude of the source. We should be
prepared to apply superposition later, considering an inductor current or
capacitor voltage specified at ¢ = ¢, as a source which must be killed when its
turn comes.

Thévenin’s and Norton’s theorems are based on the linearity of the initial
circuit, the applicability of Kirchhoff’s laws, and the superposition princi-
ple. The general RLC circuit conforms perfectly to these requirements, and
it follows, therefore, that all linear circuits which contain any combinations
of independent voltage and current sources, linear dependent voltage and
current sources, and linear resistors, inductors, and capacitors may be ana-
lyzed with the use of these two theorems, if we wish. It is not necessary to
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repeat the theorems here, for they were previously stated in a manner that is
equally applicable to the general RLC circuit.

Problems 1 Let v, and i; be assigned to a 20-mH inductor so as to satisfy the passive sign
convention. (a) Ifi; = 12e™ %" cos 10t A, findvy att = 0.1s. (b) If iy, = 8(e™% — e72)
A, find v .« and the value of time at which it occurs.
2 The current through a 2-mH inductor is i; = 0 for ¢ < 0, 5007 A for 0 < ¢ < 10 ms,
10 — 500z A for 10 < 1 <30 ms, —5 A for 30 < ¢ < 40 ms, and —5 cos? [507(t —
0.04)] A for 40 < ¢ < 50 ms. For the interval, 0 < ¢t < 50 ms: (a) sketch iy vs. t; (b)
sketch vy, vs. t, assuming the passive sign convention.

l i 3 In Fig. 4-25,let v,(t) =20t Vfor0 <t <3s,and v, = 0fort < 0and ¢ > 3. Find:
(a) the value of i-at 1 = 4 s; (b) the energy stored in the inductor at t = 2 s; (c) the

Ys gs H power entering the inductor at t = 2 s.
4 The current in a 0.4-H inductor is zero for ¢+ < 0 and 3te~ %" A for t > 0. (a) At

what instant is maximum power being delivered to the inductor? (b) At what

Fig. 4-25: See Prob. 3. instant is the energy stored in the inductor a maximum?

5 In the circuit of Fig. 4-26, let v; = 100 cos 500z V for t > —0.5 s, and let i (0) = —1
A. (a) Find i,(¢). (b) Find w(t) at t = 1 ms.

bie
+
2, C_) 200 © g 0.5 H

Fig. 4-26: See Prob. 5. ¢

6 (a) If vc(2) is given by the waveform shown in Fig. 4-27, sketch ic(¢) for —0.1 <t
< 0.2 s. (b) Sketch the power entering the capacitor over the same time interval.

Fig. 4-27: See Prob. 6. ve (V)
& A
‘c 4 uF
20 Eia i
L
Ve .
% TR S PO
/—0.1 0.1 0.2
_20-»-

7 The current through a 0.2-uF capacitor is 60 cos (10* + 36°) mA for all time. The
average voltage across the capacitor is zero. (a) What is the maximum value of
energy stored in the capacitor? (b) What is the first nonnegative value of ¢ at
which maximum energy is stored? »

8 The energy stored in a 50-uF capacitor is given as wc () = 2¢7% J for ¢ = 0. Find
the capacitor voltage, current, and absorbed power at ¢t = 30 ms.
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9 In the circuit of Fig. 4-10a, let R = 1 MQ, C = | uF, R; = =, and R, = 0. Suppose
that we wish the output to be v,(r) = ¢~'% — | V. Differentiate Eq. (16) to obtain
the necessary v,(?) if: (@) A = 1000; (b) A is infinite.

10 Interchange the location of R and C in the circuit of Fig. 4-10a and assume that
R = R, =0, and A = » for the op-amp. (a) Find v,(¢) as a function of v(t).
(b) Obtain an equation relating v,(¢) and v,(f) if A is not assumed to be infinite.

11 In the circuit shown in Fig. 4-28, ve(t) = 4te™ V. At t = 0.5 s, find the value of:
(a) the energy stored in the capacitor; (b) the energy stored in the inductor; (¢) v,.

2882 13 H

s c
Fig. 4-28: See Prob. 11. T

12 (a) If each inductance in the network of Fig. 4-29 is 1 H, find the equivalent
inductance at a-b. (b) Replace each inductor by a 1-F capacitor and find Cey.

a —— o

Fig. 4-29: See Prob. 12. b o——

I3 Find the equivalent inductance offered at terminals a-b in Fig. 4-30 if terminals
x-x" are: (a) open-circuited; (b) short-circuited.

4H _
2
1H 3H =
™ o1
6 H
a e g | [ pN— beoe— o -
1
10H 12H
I3
b e : o
Fig. 4-30: See Prob. 13. Fig. 4-31: See Prob. 14.

14 Each capacitor in Fig. 4-31 is 1 wF. Find C,, at a-b if: (a) 1-2 and 1-3 are both
open-circuited; (b) 1-2 and 1-3 are both short-circuited; (¢) 1-2 is open-circuited
and 1-3 is short-circuited; (d) 1-2 is short-circuited and 1-3 is open-circuited.

15 Given a bucketful of 1-nF capacitors, show how an equivalent capacitance of 0.7
nF might be obtained. Use as few capacitors as possible.

16 For the circuit of Fig. 4-32, find: (a) we; (b) wy; (¢) the current in each circuit
element; (d) the voltage across each circuit element.



