6.200 Circuits and Electronics

Week 8, Lecture A: Modularity in Circuits: Operational Amplifiers

Midterm 1: tonight PSet 8 releases tonight as well (no hardware, no prelab)

Operational Amplifiers

An operational amplifier ("op-amp") can be modeled^{*} as a voltage-controlled voltage source, where *k* is intentionally large (typically $\sim 10^5 - 10^7$):

* sometimes

Operational Amplifiers

What's *actually* in an op-amp? Here is a more accurate circuit model of a μ A709 op-amp:

But that's a pain...

Characterizing an Op-amp (VCVS Model)

Sketch a graph of v_o versus $(v_+ - v_-)$

Supply Rails

Op-amps derive power from connections to a power supply, and the output voltage is typically constrained by that power supply:

 $V_{\rm EE} < v_o < V_{\rm CC}$

If $k(v_+ - v_-) > V_{\text{CC}}$, then v_o will be V_{CC} . If $k(v_+ - v_-) < V_{\text{EE}}$, then v_o will be V_{EE} .

Closing the Loop

Many useful applications of op-amps involve connecting them in *feedback*, where the output affects one of the input terminals. For example, consider the following configuration:

What is v_o (in terms of v_i)? Use the VCVS model from the previous slides.

Another Op-Amp Circuit

What is v_o (in terms of v_i)? Use the VCVS model from the previous slides.

Hmmmm....

DS0X1204G, CN60117176: Tue Oct 22 20:48:41 2024

Negative Feedback

Most of the useful circuits we'll see moving forward involve feedback. But the presence of the + and - signs on the inputs imply that something is different between the following:

But the analysis produces the same answer! The VCVS model alone isn't enough to explain the difference here; we need to go deeper...

"Thinking" Like an Op-Amp

In fact, both of the systems from the previous page have metastable points at $v_o \approx v_i$. However, in order to understand the difference, we need to think about **temporal dynamics**, and what happens when the system moves away from that metastable point. Let's consider a slightly-more-complicated op-amp model. Let's start with a small op-amp:

Common Transistor Patterns

A current mirror sets its output current to equal its input current.

It can be represented by a current-controlled current source:

Common Transistor Patterns

A pair of transistors can be used to split a current.

The fraction α is proportional to $e^{(V_+ - V_-)/v_T}$, where $v_T \approx 26$ mV.

This "differential amplifier" can be represented by two voltage-controlled current sources.

Modeling An Op-Amp

Modeling An Op-Amp

Modeling An Op-Amp

Modeling An Op-Amp

Modeling An Op-Amp

Modeling Time Dynamics

This leads us to a model of the op-amp that can explain the difference:

How does this circuit behave in the negative-feedback vs positive-feedback case?

Like we do with a lot of things, the important thing to remember is not this model, but the consequence of it: negative feedback drives the input potentials together (linear VCVS model applies!), positive feedback drives them apart.