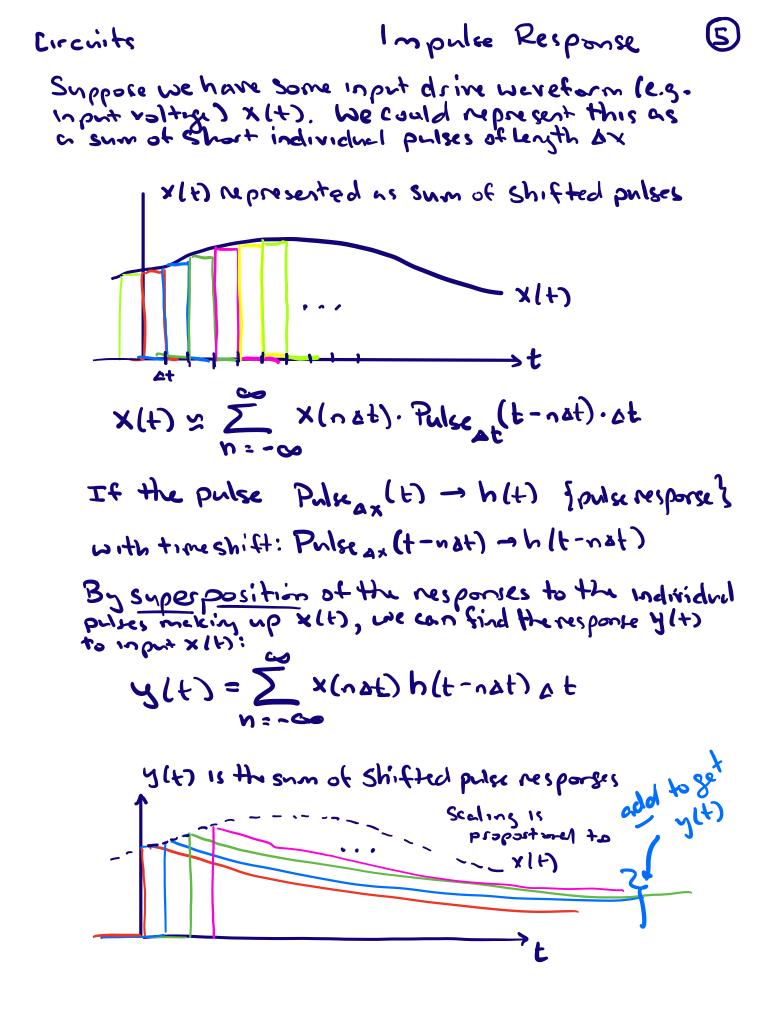


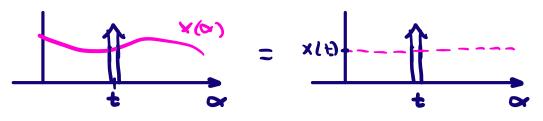
Eircuite Impulse Response (3)
"during the impulse
$$A_{L} = \lim_{x \to 0} \frac{1}{R} \left(\frac{A}{x} - V_{c} \right)$$

If V_{c} strags finite, $\lim_{x \to 0} \frac{A}{\pi} \Rightarrow V_{c}$.
 $A_{c} = \frac{1}{R} \frac{A}{\pi}$ for $0 < t < x$
 $\therefore V_{c}(t = x) = V_{c}(0) + \frac{1}{c} \int_{x}^{x} \frac{A}{xR} dt = \frac{A}{Rc}$
taking $\lim_{x \to 0} V_{c}(t = 0) = \frac{A}{Rc}$
For an impulse input we get a step change in V_{c} at
 $t = 0$, firm $V_{c} \circ t \circ V_{c} = A/Rc$. Thus, "injecting an
initial condition on $C \in t = 0$. Thus, V_{c} possible only
because the op applied voltage generates and po current
into C.
Sor $t \ge 0$, $V_{in}(t) = A \delta(t) = 0$ $V_{c}(t) = \frac{A}{Rc} = \frac{t}{(c)}$
The impulse delivered a charge onto the capacitas of
 $Q_{c} = \int_{x}^{x} A_{c}(t) dt = \int_{x}^{x} \frac{A}{Rx} dt = \frac{A}{Rc}$ etco
Since $Q_{c} = C V_{c} \Rightarrow V_{c}(t = 0^{+}) = \frac{A}{Rc}$
* essentially, the impulse places on "initial condition" on
 $C \oplus t = 0$.



Circuits Impulse Response (C
IF we take the limits of our two sum expressions
as \$t =0
X(t) = 1.m
$$\sum_{n=-\infty}^{\infty} X(n at)$$
. Pulse $(t-nat) \cdot at$
 $at = 0$ $n = -\infty$
X(t) = $\int_{-\infty}^{\infty} X(a) \delta(t-a) dX$

The sifting property works because these products w=



$$y(t) = \lim_{\Delta t \to 0} \sum_{n=-\infty}^{\infty} x(n\Delta t) h(t-n\Delta t) \Delta t$$

.

$$y(t) = \int_{-\infty}^{\infty} x(\alpha) h(t - \alpha) d\alpha \stackrel{\text{(t)}}{=} x(t) * h(t)$$

Thus for any LTE circuit, by superpositing
If
$$V_{\lambda}(t) = S(t) \longrightarrow LTE \longrightarrow V_{0}(t) = h(t)$$

for any $V_{\lambda}(t)$, we can express $V_{\lambda}(t) = \int V_{\lambda}(\alpha) S(t-\alpha) d\alpha$
 $\therefore V_{\lambda}(t) \longrightarrow LTE \longrightarrow V_{0}(t) = \int V_{\lambda}(\alpha) h(t-\alpha) d\alpha$

Circuits

Impulse Response

 $(\overline{\mathbf{z}})$

Thus: If we know the impulse response h(t), we can compute the output for any input directly!

These properties : revealing returnal response + being cible to find the response to any input make knowing the impulse response really valuable.