Circuits

treguency Response

 $\left(1\right)$

Impedence: For complex exponential drive Signals Can use impedances to calculate volt-ges and currents in a Circuit. This is weful for celevilating responses to sinusuidal

We can use impedance to directly find the "transfer

Circuits	Frequency Response (2)	
Example: Transfer function from Vito V6 for s=jer helps		
$v_{i}(t) = \hat{V}_{c}e^{i\omega t}$ $\bigoplus_{l}^{L} \bigoplus_{\ell}^{L} \bigotimes_{j=1}^{l} v_{o}(t) = \hat{V}_{o}e^{i\omega t}$		
By voltage division: $\frac{\dot{\tau}_0}{\dot{\tau}_t} = \frac{R}{R + i\omega L} = H(s) \frac{d}{s - j\omega} \frac{d}{d} H(\omega)$		
[Note: some texts we ite H(s) as H(ju), while other express it as H(w), we will write H(w) ^{s=ju} to emphasize that the transfer function H is a function of angular frequency w.]		
We can express the transfer function from input vottage Vi to $H(\omega) = \frac{R}{R+j\omega L} = \frac{R}{\sqrt{R^2+(\omega L)^2}} e^{-\frac{i}{2}A T a \omega (\omega / \kappa)} = H\omega e^{-\frac{i}{2}A H(\omega)}$		
$ H(\omega) = \frac{k}{\sqrt{e^2 + (\omega L)^2}}$ $\propto H(\omega) = -A\pi A \sqrt{\frac{\omega L}{R}}$		
We can use the transfer function to calculate how sinisoids		
If $V_4(t) = V_4 \cos(t + \phi_4) = R_4 \{V_4 e^{i\phi_4} e^{i\phi_4}\} = R_2 \{V_4 e^{i\phi_4} e^{i\phi_4}\}$ $V_5(t) = R_2 \{H(\omega) \cdot \hat{V}_f e^{i\omega_4} \} = R_2 \{H(\omega) V_4 e^{i(\omega t + \phi_4 \kappa H(\omega))}\}$		
: $V_o(t) = H(\omega) \cdot V_A \cos(\omega t + \phi_A + \kappa H(\omega))$		

So H(w) tells us how the output sinusoid is scaled
(by $|H(u)|$) and phase-shifted (by & H(w)) with respect to the input sinusoid!

Circuits Frequency Response We can easilyidentify thebehavior of these filter FITEmbp.net fifthnc5Ifetmeti behavior ^w ^o capacitoropens inductorshort resistorconstant ^w as capacitor short inductor opes resistorconstant Howthings changeat midfrequenciesdepend on components To get band pess bandstop we mustdosomething more sophisticated Transfer function plots Magnitudes are sometimes shown on ^a log log plot as Efu needed Bee spirit to express the For ratios of voltages or currents as with transfer Sgt fit eaga press the transfer function Hews in dB ²⁰ log 1 The units here are simply dB For ^a transfer function from ^a current to ^cvoltage units would be ^d BM Wecouldalsoexpress ^a voltage or currentmagnitude in dB ²⁰log V1 or ²⁰ log III withunits of dBV ordBA which means dB with respect to IV or 1A Consider our previous RC circuit the Eastin magnitude ʰII

- One key benefit of using dis lor a loy seele for mag mitule values in the plot. at a wide range of mag
- Another benefit of using dB is that if we're looking at products or ratios of magnitudes, they

 $20 log_{12}(AB) = 20 log_{12}(A) + 20 log_{12}(B)$ os $20 \log_{10} (\frac{A}{8})$ = $20 \log_{10}(A)$ - $20 \log_{10}(B)$

 \bigoplus Circuits Frequency Response Angles of multiplied complex #5 (like Xferfors Irecty add/subtract on a linear scale $69a^{1.69a5} = 69a^{1.6b}$ S^{3} for $H^{3}(m) = H^{1}(m) \cdot H^{2}(m)$: $4H_3 = 4H_1 + 4H_2$ and $20 log_{10}(1 H_3) = 20 log_{10}(1 H_1) + 20 log_{10}(1 H_2)$ This is useful for cascaded systems in which the one all transfer tusction is the product of A final note about dB if we want to represent power or ^c of powers in dB, the definition changes Power in des = 10 log (P) {with P in Wetts (w) Why We would like dB to represent the same concept for citier voltage or power waveform! 20 dB in voltage is a factor of 10 in voltage
which gives a factor of 100 in power (in a
ductor) That we need a factor at 100 in Power resistor.) Thus, we need a factor of 100 in power
to be represented as 2s dB if we work directly with power. 10 log (100 Po) = 20 + 10 log (P_0) factor of ¹⁰⁰ in power

Sives additional 20 dB!