Circuits

trequency Response

(1)

Impedance: For complex exponential drive Signals (ic. of the form Aest, where A and S may be complex) we can use impedances to calculate wilt-ger and currents in a circuit. This is useful for celculating responses to sinusoidal inputs, (real) exponential inputs, and for finding natural (undriven) responses of LTI circuits.

1xH)=Îe	μ γ [×] (+2 = ,	Ŷxe st Z,	$(s) \triangleq \hat{V}_{x}$	•
Component	Impedance	for S=jw (Simeoids)	@u=0 (dr)	QU 200 (high freg.)
$v_{c}^{+} + \frac{1}{1} v_{c}^{+}$	$Z_c = \frac{1}{sc}$	3- 1100	$ z_c \rightarrow \infty$ (open)	Z, →0 (Short)
+ 1+ 1 V2 -	2 ₆ -5L	²,=jal	ZL →0 (shost)	7.1~00 (open)
$v_{2} \neq 1$	2 _R =R	₹ _e =R	No dependence	No dependence

we can use impedance to directly find the "transfer function" between different waveforms, e.g.

Circuits	trequency	Response	2
Example: Transfer function us analyze sinusoi	from Vi to V hal steady st	stor S= jes 1	relps
$v_{i}(t) = \hat{v}_{e}^{iut} $] + \$ V°(F) = L °	ejut	
By voltage division: $\frac{V_0}{V_E}$ = (usi-jinpedances) $\overline{V_E}$	R R+jwl	= H(s) = }	+(w) 7
[Note: some texts write H(s) it as H(w). We will write H(L transfer function H 1s a fun	as H(ju) S=ju to employed ction of any), while others isize that the lar frequercy	express
We can express that sense function ontput volting V_{0} as: $H(\omega) = \frac{R}{R+j\omega L} = \frac{R}{\sqrt{22}}$	the from inf	wh voltage V_{A} rang (v_{R}). = $ H(v_{R}) \in$	to to
$ H(\omega) = \frac{R}{\sqrt{R^2 + (\omega)^2}} \propto$	$H(\omega) = -A$	TAN (DL)	
we can use the transfer fun are processed in sinuroidal	ction to calco stendy stat	nlate how su	moids
$If V_{i}(t) = V_{i} \cos(\omega t + \varphi_{i})$ $V_{i}(t) = \operatorname{Re} \left\{ H(\omega), \tilde{V}_{i} \in \tilde{\partial}^{\omega t} \right\}$) = Re{V_e	$d d = e^{-1} f = e^{-1}$	
$\therefore V_{o}(t) = H(w) \cdot V_{A} \cos \theta$	$(\omega t + \phi_{A} +$	* H(w))	

So H(w) tells us how the output sinusoid is scaled (by [H(w)]) and phase-shifted (by & H(w)) with report to the input sinusoid!

- One key benefit of using dB (or a log scale for magnitude) is that one can look at a wide range of magnitude values in the plot.
- · Another benefit of using dB is that if we're looking at products or ratios of magnitudes, they simply add or statsact when in dB, by log properios:

20 log (AB) = 20 log (A) + 20 log (B) 20 log, (A) = 20 log, (A) - 20 log, (B) 20

 (\mathbf{F}) trequency Response Circuits Angles of multiplied complex #5 (like Xfer fins) already add/subtract on a linear scale: edu.edu = Cd(01+02) $S_{2} f_{2} H_{3}(\omega) = H_{1}(\omega) \cdot H_{2}(\omega)$ $A_{H_3} = A_{H_1} + A_{H_2}$ and 20 log (1 H31) = 20 log (1 H,1) + 20 log (1 Hz1) This is useful for cascaded systems in which the overall transfer function is the product of individual transfer functions. A final note about dB: ★ if we want to represent power ar a ratio of powers in dB, the definition changes : Power in dB = 10 log (P) Swith P in Wetts (W) units would be dBW } why? We would like dB to represent the same concept for Either voltage or power were forms ZO dB in voltage is a factor of 10 in voltage which gives a factor of 100 in power (in a resistor.) Thus, we need a factor of 100 in power to be represented as 20 dB it we work directly with porr. 10 log, (100 P.) = 20 + 10 log, (P.) Factor of 100 in power

Sives additional ZodB!