Circuite Damped Second-Order Circuite ()

Today let's expand our previous discussion to look at the time-domain behavior of damped second-order circuits.

Consider as an example a "series RLC" circuit: $V_{i}(t) = V_{t}u(t) \oplus i_{t} \qquad C \oplus V_{c}(t)$

For this case, we get as initial conditions: $\dot{A_{l}}(o^{-}) = \dot{A}_{l}(o^{+}) = 0$ $V_{c}(o^{-}) = V_{c}(o^{+}) = 0$

This circuit has two independent energy storage elements. It will thus be represented by a second-order differential equation, and have a reporse that comprises

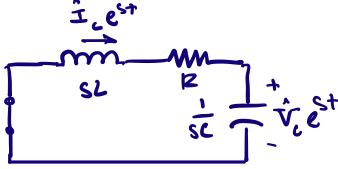
- O A perticular response, which we can determine as the de steady-state response
- 2 A natural response having (up to) two natural frequencies and two scaling constants that are determined by the two initial conditions.

Since our input for t>D is constant, we already know how to find a particular solution. It is the de stendystate response.

$$V_{I} \stackrel{(+)}{=} V_{c}(+) = S_{c} \qquad V_{c} \qquad V_{c}(+) = S_{c} \qquad V_{c}(+) = S_{c} \qquad V_{c} \qquad V_{c} \qquad V_{c}(+) = S_{c} \qquad V_{c} \qquad V_{c}(+) = S_{c} \qquad V_{c} \qquad V_{c$$

 $I_{L} = O \quad V_{C} = V_{I}$

We can easily find the form of the natural response by looking at the undriver circuit (V; = 0) in terms of impedances:



$$\hat{I}_{L}e^{St}\left[SL+R+\frac{1}{SC}\right]=0$$

$$\hat{I}_{1}[s^{2}LC + SCR + 1] = 0$$

The solutions S, S2 to the characteristic equation give
the natural response luits scaling constants A, A2):
$$V_{c,h} = A_{e}e^{s_{t}t} + A_{2}e^{s_{2}t}$$

Aside: We could also determine the characteristic equation by directly analyzing the circuit in the time domain and guessing solutions of the form Aest: $kv_{L}: L di_{L} + R \cdot \dot{A}_{L} + V_{c} = D$ $\vec{A}_{L} = \vec{A}_{L} = C \frac{dV_{c}}{dt}$

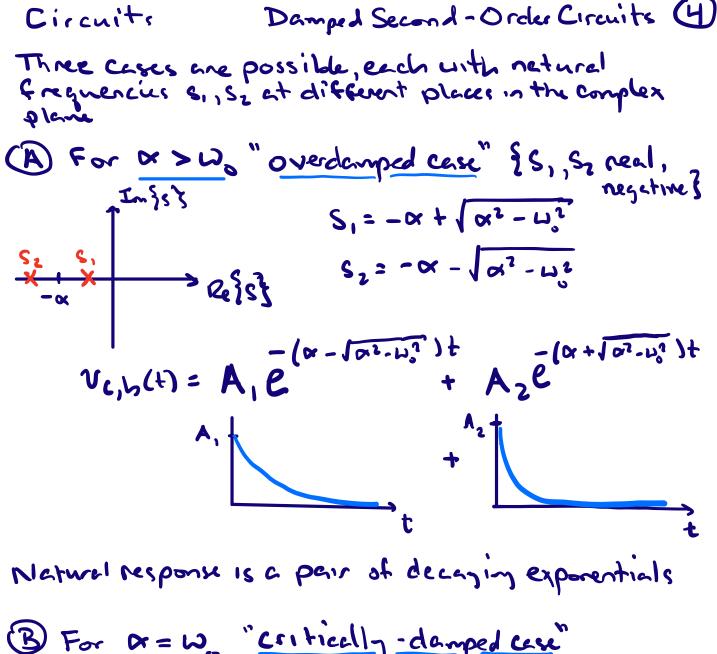
Circuits Damped Second - Order Circuits (3)

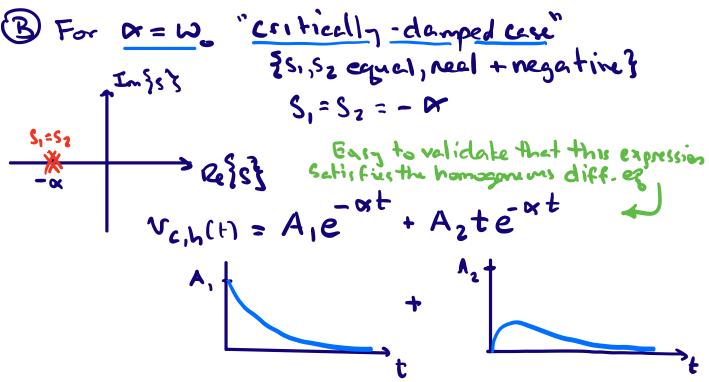
$$LC \frac{d^2V_c}{dt^2} + RC \frac{dV_c}{dt} + V_c = 0$$
Homogeneons
differential
Cyn.
Quessing $V_{c,h} = Ae^{ch}$ gives
 $LC s^2 Ae^{sh} + RC sAe^{sh} + Ae^{sh} = 0$
 $LC s^2 + RC s + 1 = 0$
or $s^2 + \frac{R}{L}s + \frac{1}{Lc} = 0$ Characteristic
equation
For this system, the natural frequences $s = (-s_1, s_2)$
 $Cre :$
 $s = -\frac{R}{2L} \pm \sqrt{(\frac{R}{2L})^2 - \frac{1}{Lc}}$
Defining $Or = \frac{R}{2L}$ $W_0 = \frac{1}{\sqrt{Lc}}$

damping coefficient natural frequency (we use these substitutions to put our equations into a "standard form that applies to all kinds of second-order circuite and systems)

we get
$$S_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_o^2}$$

The exact form of our solution depends on the relative values of 0, 20, 5, 52 may be real or complex.





Damped Second - Order Circuits (5) Circuits (C) For ox < Wo "underdamped case" 15, , Sz complex } $S_{1,2} = -\alpha \pm \frac{1}{2} \sqrt{\omega_{0}^{2} - \alpha^{2}}$ +ういの Imgsy ¿ س Wd = U2- or is the "damped Re{s] natural frequenzy $(\omega_0 = \sqrt{\omega_1^2 + \sigma^2})$ -909 · Vc, h(+) = A, erteiwat + Azertejwat or Ve, hit) = B, er cos (u, H + B2 er sin (u, t) or Vc, h(+) = C, ert cos(ust + Cz) In the underdamped case, our natural negoonse is a decaying sinusoid Wd "damped natural frequency" is the oscillation angular frequency "exponential damping coefficient" is the decay rate of oscillation ci.e. of the envelope) X Vch Two coefes(eg. B, B) set the magnitude + phase of the Oscillation to meet Initial S Conditions

Circuits Damped Second - Order Circuits (6)
The relative rate at which the natural response oscillates
relacous determines a lot about the system response, e.g.
Vs.
Vs.
To characterise this, we define circuit "guality factor
Ownlity
$$Q_0 \triangleq \frac{1}{2} \cdot \frac{\omega_0}{\alpha}$$
 Quality factor duen
cipcers as a metric
Tells us have quickly the natural response oscillates
as compared to how it decays:
 $Q_0 \leq \frac{1}{2}$ overdamped (exponential decay only)
 $Q_0 = 1$ oscillates but damps quickly
 $Q_0 \gg 1$ highly oscillatory
writing the characteristic equation in terms of $\omega_0 Q_0^2$:
 $S^2 + \frac{\omega_0}{Q_0} S + \omega_0^2 = 0$
We can identify
from the characteristic
 $equation!$

Circuits Damped Second-Order Circuits 3
In circuit terms : For the series RLC circuit
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$Q_{0} = \frac{1}{R} = \frac{2}{R}$
where $z_0 = \sqrt{\frac{1}{2}}$ is the
So we withere "Characteristic impedance"
• high-Q (highly oscilletory) behavior when R < 1] • Oscilletion with rapid damping for R ~ 14c
· Oscilletion with rapid damping for R ~ Vic
· Overdamped exponential de cuy only for R > 21/2
* so just by comparing circuit values 1 =, R
we can tell how oscillatory the response will be.
The details are different for other circuits, c.g. parellel ELC, but youchy boil down to compassions between Vic and R.
* we can also identify circuit characteristics from waveforms, e.g. for high Q (Qo>S) Case
=) Wod = Woo = Vice -> look at natural response Oscillation frequency.
⇒ oscillations de cay (to ~4%) of initial) in Qo cycles (so count oscillations to estimate @).
See dens circuit for example behavior!