Circuits

We have seen that second -Order RLC circuits can have interesting response properties. Let's further consider their behavior under sinusoi del drive conditions.

Resonance in a second-order circuit can be defined as when the voltage end current at the network input terminals one in phase (i.e. the bad impedance seen by the source is resistive.) {Resonance implies a sinusoidal drive of the network.}

One gets maximum amplitude responses in a second-arder system for a frequency at or mean resonance The maximum response frequency tends to converge on the resonant frequency as damping becomes lighter, as shown below.

Example: Parallel Resonant Circuit

 $\int (\frac{1}{2})^2 + (\omega c - \frac{1}{2})^2$

Resonance and Second-Order Systems (3)

One reason we might express things in terms of Q. 15 that Q. expresses the amount of peaking and the frequency range over which peaking occurs in the frequency range over which peaking occurs

Also, Qo reflect: the frectional width in frequency the fractional "bondwielth." over which the peaking occurs. We consider the range of frequency over which 12.1 is $\geq \frac{1}{12}R$. This is the "half-power" bandwidth.

So Q. gives the amount of peaking and bandwidth of peaking in 12, ~ (w)1! More peaking - narrower BW

Circuits Resonance and Second Order Systems (
Note that these sinusoidal excitation characteristics
relate back to the time-domain natural responses and
to the Natural frequencies s "pole" where
$$Z_{1n}(s) \to \infty$$

characteristic egn:
 $s^2 + \frac{1}{RC} S + \frac{1}{LC} = 0$
Unive $\Omega = \frac{1}{2ec}$, $Wd = \sqrt{W^2 - W^2}$ for $\begin{cases} W_0^2 + \frac{1}{LC} \\ t_0^2 & t_0^2 \end{cases}$
If $R < \frac{1}{2}t_0^2$ gives S_{1,S_2} on real axis "overdamped"
 $R = \frac{1}{2}t_0^2$ gives S_{1,S_2} on real axis "overdamped"
 $R > \frac{1}{2}t_0^2$ gives S_{1,S_2} in complex plane "underdamped"
 $R > \frac{1}{2}t_0^2$ gives S_{1,S_2} in complex plane "underdamped"
 $R > \frac{1}{2}t_0^2$ gives S_{1,S_2} in complex plane "underdamped"
 $R > \frac{1}{2}t_0^2$ gives S_{1,S_2} in complex plane "underdamped"
 $Lm_{SG} = \frac{1}{2W}$
 $Vide demped R < \frac{1}{2}t_0$
 $Vide demped R < \frac{1}{2}t_0$

Circuits Resonance and Second-Order Systems (7)
Note that Quality factor has a more general
definition and can be applied to any Sinuspidelly-
driven LTS network:
We can define the quality factor of a Sinusodelly-
driven system as

$$Q = 2\pi$$
 Peak energy stored own a cycle
Total energy dissipated in a cycle
Total energy dissipated in a cycle
How much genergy we are dissipation in a Crenit
as compared to how much energy we are a compared to
how much genergy we are dissipation.
High Q G low % dissipation
Example: a periellel RC circuit
 $T cos(wt) = \frac{1}{2}CV_c^2$
energy dissipated in $Q = \frac{1}{2}CV_c^2$
 $Creny dissipated in $Q = 2\pi \frac{1}{2}\frac{1}{2}V_c^2\frac{1}{2}\cdot\frac{2\pi}{2}$ $= WC$$$$$$$$$$

Circuits Resonance and Second-Order Systems (2)
We can find quality factor for an PLC circuit
such as our "perellel" resonant circuit
I cos(Wt) (1) V R L 3 C T VC
The quality factor Q will be a function of frequency
However, it is after of interest to find the
quality factor Q will be a function of frequency
However, it is after of interest to find the
quality factor Q to resonance (i.e. at the resonant
frequency Wol. Let's call this specific value Qo
Q A Q(W) = The quality factor et
the frequency where
If we work it out, we will find that
Q(W) = Q = Q = R
So when we are doccurbing the "quality factor"
of a Second-order resonant eir cuit, we generally
mean the quality factor at resonance!
i Q = 2TT peak crange stard in L, R

$$Q = 2TT \frac{peak crange stard in L, R}{charry dissipated in R own acycle
Q = W = Wo$$