Circuite Forced + Natural Responses ()
Let's consider the following circuit:

$$T_{L}$$

0.12° 2°

Circuits

Forced + Natural Responses

(3)

We have a low - pecs filter: passes voltages for frequencies w>w attenuates voltages for frequencies w>w peaking near W=Wo depends on Qo = R/Zo Natural Response: $\hat{V}_0 e^{st} = H(s)\hat{V}_x e^{st}$ when can \hat{V}_0 be nonzero for $\hat{V}_x = D$ (no drive)? only if the denominator of $H(s) \rightarrow D$ $S^2 + \frac{1}{2c}S + \frac{1}{1c} = D$

Naturel respon	n Aest fa	$S_{1,2} = -\frac{1}{2RC}$	$\pm \sqrt{\left(\frac{1}{2ec}\right)^2 - \frac{1}{Lc}}$
3 possible (Fm?	cases 3	rt m Esz	۲ ^۲ m es g
Sz Si X X Zec	Refsz 5,=52	هادع	- in Regist
overdemped $\frac{1}{\sqrt{1c}} < \frac{1}{2ec}$ $R < \frac{1}{2} + \frac{1}{2}$	Contien L VLC = R =	Ily damped 2 RC 1 Zo	underdamped $\frac{1}{\sqrt{Lc}} > \frac{1}{2ec}$ $R > \frac{1}{2} \frac{2}{2}$

S_{1,2} real S_{1,2} real, equal S_{1,52} complex $V_{,h} = A_1 e^{5t} + A_2 e^{2t}$ $V_{o,h} = (A_1 + tA_2) e^{5t}$ $V_{o,h} = A_1 e^{5t} e^{5t}$ $V_{o,h} = A_1 e^{5t} e^{5t}$ where o = - zec $\omega_d = \sqrt{\frac{1}{10} - (\frac{1}{200})^2}$

Note that this is a "parallel resonant" circuit: when there is no drive, $(V_x=0)$, L, R, C are in parallel! $Q_0 = \frac{R}{\sqrt{1/c}}$ more oscillatory oscillatory as less energy remained by R each where the driver (forced) response.

Circuits Forced + Natural Reponses (6)
After netword response dies away we get the Steady-
State (forced) merganse (by superposition)

$$N_0(t) = \left\{\frac{V_{1N}}{2}, |H(0)|\right\}^{n}$$
 de Comparati-
 $t = \left\{\sum_{k=0}^{\infty} |H(2kH)|\omega_1|\right\} + |H(0)|\right\}^{n}$ de Comparati-
 $t = \left\{\sum_{k=0}^{\infty} |H(2kH)|\omega_1|\right\} + \frac{2V_{1N}}{2}$ Cos($(2kH)|\omega_1 + \pi^{k} + \frac{1}{2}\right\}$
 $t = \left\{\sum_{k=0}^{\infty} |H(2kH)|\omega_1|\right\} + \frac{2V_{1N}}{2}$ Cos($(2kH)|\omega_1 + \pi^{k} + \frac{1}{2}\right\}$
 $t = \left\{\sum_{k=0}^{\infty} |H(2kH)|\omega_1|\right\} + \frac{2V_{1N}}{2}$ Cos($(2kH)|\omega_1 + \pi^{k} + \frac{1}{2}\right\}$
 $t = \left\{\sum_{k=0}^{\infty} |H(2kH)|\omega_1|\right\} + \frac{2V_{1N}}{2}$ Cos($(2kH)|\omega_1 + \pi^{k} + \frac{1}{2}\right\}$
 $t = \left\{\sum_{k=0}^{\infty} |H(2kH)|\omega_1|\right\} + \frac{2V_{1N}}{2}$ Cos($(2kH)|\omega_1 + \pi^{k} + \frac{1}{2}\right\}$
 $t = \left\{\sum_{k=0}^{\infty} |H(2kH)|\omega_1|\right\} + \frac{2V_{1N}}{2}$ Cos($(2kH)|\omega_1 + \pi^{k} + \frac{1}{2}\right\}$
 $t = \left\{\sum_{k=0}^{\infty} |H(2kH)|\omega_1|\right\} + \frac{2V_{1N}}{2}$ Cos($(2kH)|\omega_1 + \pi^{k} + \frac{1}{2}\right\}$
what will our (periodic steady state) waveforme
look like?
If $V_0(H)$ is almost constant (due to filtering) $A_2(H)$
 $t = \frac{4}{2}(r)$
 $t = \frac{4}{2}(r)$
 $t = \frac{1}{2}(r)$
 $t = \frac{$

Since the capacitor takes most of the ripple current, we could also approximately calculate the ripple voltage as Vo,ac = t Strace dt

