6.200 Circuits and Electronics

Week 7 Recitation: Operational Amplifiers

Grab participation sheet by the door. Midterm: next Tuesday (review materials on web). No p-set this week.

Loading

Circuit design is complicated by interactions among the elements. Adding an element changes voltages and current *throughout* the circuit. For example, what happens when the switch is closed in the following circuit (effectively adding the light bulb as a new component)?

- 0. v_o and i_o stay the same
- 1. v_o decreases, i_o decreases
- 2. v_o decreases, i_o increases
- 3. v_o increases, i_o decreases
- 4. v_o increases, i_o increases
- 5. depends on the bulb's resistance

Memories...

Consider an arbitrary sensor with a small output voltage, driving a load of some kind:

What is the problem here?

Amplifiers

We could resolve this issue by building a circuit that behaves like the following, to isolate the sensor and the load (and also scale up the sensor's voltage):

Check Yourself

For this amplifier to work as well as possible, what should $R_{\rm in}$ and $R_{\rm out}$ be?

- 1. $R_{\rm in}$ small, $R_{\rm out}$ small
- 2. $R_{\rm in}$ small, $R_{\rm out}$ big
- 3. $R_{\rm in}$ big, $R_{\rm out}$ small
- 4. $R_{\rm in}$ big, $R_{\rm out}$ big

Operational Amplifiers

An operational amplifier ("op-amp") can be modeled[∗] as a voltage-controlled voltage source, where k is intentionally large (typically $\sim 10^5-10^7$):

∗ sometimes

Operational Amplifiers

What's *actually* in an op-amp? Here is a more accurate circuit model of a μ A709 op-amp:

But that's a pain...

Characterizing an Op-amp (VCVS Model)

Sketch a graph of v_o versus $(v_+ - v_-)$

Supply Rails

Op-amps derive power from connections to a power supply, and the output voltage is typically constrained by that power supply:

 $V_{\text{EF}} < v_{\text{o}} < V_{CC}$

Op-Amps as Comparators

Other than the (tiny) range of $v_+ - v_-$ values where we're operating in the linear region, the op-amp's output voltage will be forced to one or the other of the supply rails, so the op-amp naturally behaves as a comparator:

Under what conditions is the output equal to V_{CC} ? Under what conditions is the output equal to V_{EE} ?

Check Yourself

Consider this circuit again, where:

- $V_{CC} = 5V$
- $V_{\text{FE}} = -5V$
- $V_{\text{ref}} = 0$ V
- $v_{\text{in}}(t) = \sin(t)$

Sketch the input $v_{\text{in}}(t)$ and the output $v_{\text{out}}(t)$ on the same axes.

Comparator in Practice

See rec07.py.

Dealing with Noise

We can deal with the effect of this noise by adding some *hysteresis* into our system. Practically, we will be changing V_{ref} based on the current value of the output using the following topology: $v_{\rm in}$

Notice that the value of v_+ changes as v_{out} changes.

What is v_+ when $v_{\text{out}} = V_{CC}$? What is v_+ when $v_{\text{out}} = V_{\text{EE}}$? How would this change affect your graph from the previous slide?