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Final Exam
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Name:

• There are 10 problems and 32 pages (including this cover page) in this exam. The
last page of the exam is blank, in case extra space is needed.

• There are 141 possible points you can earn on this exam.

• Do not remove any pages from this exam.

• Do your work for each question within the boundaries of that question. If you use
the additional pages for any work, indicate this fact in text in the valid answer space.
Enter your answer to each question in the corresponding answer box provided.

• You may refer to one 8.5”× 11” pages of notes, double-sided.

• Calculators, smartphones, and laptops are not permitted. If you find yourself in need
of a calculator, you may be going in the wrong direction. You may include expressions
such as 2π or e in your answers, even if a numerical answer is called for.

• Show your work. Unless you write out your thought process clearly, partial credit
will not be awarded for incorrect solutions. Some problems may require work to be
shown to receive full credit.



Problem 1, 14 pts: Short Circuits

(1A) (1pts) The circuit below is observed at t = 0 to have current iL = I◦ flowing through
an ideal inductor. The voltage source is set to 0 V and does not change. What is the
current iL at time t = L/R?

−
+V=0V R L

iL(0)=I◦

iL(t = L/R) = I◦

(1B) (2pts) Fill in the box shown with a circuit that will provide the indicated i-v relation.
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(1C) (4pts) Circle the correct variable values below each of the circuits.

(1D) (3pts) For each element below, assume it is connected to an external circuit network.
Is power flowing from the external circuit to the element, or from the element to the
external circuit, or is it impossible to say with the given information? Circle one
option for each element:
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(1E) (4pts) Consider a signal on the triggered voltage-time oscilloscope trace shown below:

100 millisec/div100 millisec/div100 millisec/div100 millisec/div0.2 volt/div0.2 volt/div0.2 volt/div0.2 volt/div

Write a numeric equation completely describing the signal. Pay close attention to the
location of the ground.
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Problem 2, 6 pts: Phasors Set to Stun

Suppose you are given a black box, an input signal vIN, and an output signal vOUT.

(2A) (3pts) What is the gain of the circuit |H| =
∣∣∣Vout
Vin

∣∣∣?

|H| = 0.5
1

= 0.5

(2B) (3pts) What is the approximate phase shift ∠H of the circuit? Be sure to specify
your units (degrees or rads) and provide the correct sign.
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Problem 3, 12 pts: Charge Ahead

Consider the following circuit:

−
+5V

1kΩ

1µF
+

−

vC

The voltage source shown on the left is a constant 5V source. The switch is opened and
closed according to the following rules:

• Before t = 0, the switch is open (and vC(0−) = 0).

• From 0 ≤ t < 1ms, the switch is closed.

• From 1ms ≤ t < 2ms, the switch is open.

• For all t ≥ 2ms, the switch is closed.

(3A) (6pts) On the axes below, sketch a plot of vC(t) versus t. Label all key values in your
plot. For any exponential curves, also indicate the associated time constant.
For 0 ≤ t < 1ms, vC(t) follows an exponential curve with a time constant of τ = 1ms. If we left
the switch closed forever we would approach limt→∞ vC(t) = 5V, but since we open the switch after
exactly one time constant, we reach approximately 0.63 × 5V.
For 1ms ≤ t < 2ms, vC(t) remains constant at the same value that that it had just before the switch
was opened (with no path for current to flow, the capacitor can’t discharge!).
For t ≥ 2ms, vC(t) follows an exponential curve starting from that value, increasing to approach 5V.

0

τ = 1ms

τ = 1ms

5V ×
(
1− 1

e

)
≈ 0.632× 5V

1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms

(asymptote at 5V)

time

v C
(t
)
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(3B) (6pts) Now consider the following circuit (slightly modified from the previous one):

−
+5V

1kΩ

1µF 100Ω
+

−

vC

In this circuit, the switch is changed in the same way as in the previous part:

• Before t = 0, the switch is open (and vC(0−) = 0).
• From 0 ≤ t < 1ms, the switch is closed.
• From 1ms ≤ t < 2ms, the switch is open.
• For all t ≥ 2ms, the switch is closed.

On the axes below, sketch a plot of vC(t) versus t. Label all key values in your plot.
For any exponential curves, also indicate the associated time constant.
For 0 ≤ t < 1ms, vC(t) still follows an exponential curve, but now with a much smaller time constant
(τ = (100Ω||1000Ω) × 1µF, less than 1/10 the original time constant). This is small enough that
the circuit has effectively converged by the time 1ms rolls around; but it no longer converges to 5V,
but rather to 5V

11 .
For 1ms ≤ t < 2ms, the capacitor now discharges during this time, with a time constant of 0.1ms.
The small time constant (relative to the length of this region) means that the capacitor is effectively
completely discharged by the end of this period).

For t ≥ 2ms, vC(t) still converges to a constant, but now that constant is 1
11 × 5V instead of 5V.

0

τ = 1
11

ms

τ = 1
10

ms

τ = 1
11

ms

1ms 2ms 3ms 4ms 5ms

(asymptote at 5
11

V)

time

v C
(t
)
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Problem 4, 18 pts: Peaches and Pairs

For each pair of circuits below, find constraints on the parameter values of the unspecified
components that would make the two circuits equivalent to one another (in terms of the i-v
relation at the indicated port). If any of the unspecified component parameter values are
irrelevant, indicate that explicitly in your answer.

You should solve for numeric values exactly, but you may use + and || in your answers
to represent series and parallel combinations of symbolically-specified resistors, respectively,
rather than expanding those expressions out fully.

You may assume that all op-amps are ideal, and you may ignore power supply limitations
of the op-amps.

(4A) (6pts) Pair 1

Va

Ra

Rb

i

v 6V

20Ω

50Ω

1A

10Ω

30Ω
1

3
A

i

v

Using whichever method you prefer, we can find the Thévenin equivalent of the circuit on the left to be
Vth = Va and Rth = Ra +Rb. So we won’t be able to solve for Ra or Rb as individual values, but we can find
some relationships by finding the Thévenin equivalent of the circuit on the right. Then its Thévenin voltage
will be equal to Va and its Thévenin resistance will be equal to Ra + Rb.

We can first solve for the resistance by setting all the source values to 0 and then finding the resistance
between the two terminals. Setting the source values to zero gives us a circuit like this:

20Ω

50Ω

10Ω

30Ω

i

v

We can then solve for the resistance between the two terminals. From that perspective, we see the 30Ω
resistor in parallel with the series combination of 20Ω and 10Ω, so we have Rth = 30Ω||(20Ω + 10Ω) = 15Ω.

Next, we can find the Thévenin voltage. The easiest way to do that for this circuit is to use superposition.
This will give us three circuits to solve, but each circuit will be a simple voltage or current divider, or
something similarly straightforward to solve. Here are our three circuits and their associated solutions:

6V

20Ω 10Ω

30Ω

i = 0

3V

voltage divider (1/2 drops over 30Ω resistor)

20Ω

50Ω

1A

10Ω

30Ω

i = 0

−10V

current divider (1/3 flows through right branch)

20Ω 10Ω

30Ω
1

3
A

i = 0

5V

all current flows through the equivalent resistance of 15Ω

Summing, we find our overall Thévenin voltage is −2V. So for these to be equivalent, we need:

Va = −2V, Ra + Rb = 15Ω
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(4B) (6pts) Pair 2

3Ω

4Ω

5V

12Ω i

v

8V

R1

R2

R4

R3

5V

i

v

The strategies from the last part won’t really work here because of the op-amp, but hope is not lost! We
can make these two circuits have equivalent v/i relationships by equating their short-circuit currents and
open-circuit voltages, respectively.

Solving for the open-circuit voltage of the circuit on the left, we find that the voltage at the output terminal
of the op-amp (the − terminal of the port we’re interested in) is at 1V with respect to our reference voltage.
Since no current flows through the 12Ω resistor, the + terminal must be at the same potential as the inverting
input of the op-amp, which is at 5V relative to our reference. Thus, vOC = 5V − 1V = 4V.

For the circuit on the right, we know that no current flows into/out of the input terminals of the op-amp,
so the node in between R2 and R4 (the − terminal of the port we’re interested in) must be at 5V. Thus,
the current flowing down through R4 must be 5V

R4
, and, by KCL and taking into account the constraints the

op-amp imposes, this same current must be flowing through R2. Since v is just the drop across R2, this tells
us the vOC = R2

R4
5V. This isn’t enough to solve everything yet, but combining this with our result from the

left circuit tells us that R2

R4
= 4

5 .

Now what remains is to find the short-circuit current for each. Let’s start with the circuit on the left again.
Here, if we short the terminals together, the 12Ω and 4Ω resistors form a current divider. We have 1A flowing
through the combination from the left (via the 3Ω resistor), and 1/4 of that current will flow through the
top branch. So our iSC = −0.25A.

Back to the circuit on the right, if we whort the terminals to find iSC, we still have the constraint from
before that the current flowing down through R4 must be 5V

R4
. But now, that same current must be exactly

what is flowing through our short, so we have iSC = − 5V
R4

. Combining with our result from the left circuit,
this tells us that −0.25A = 5V

R4
, so we must have R4 = 20Ω.

Finally, we can combine this with the constraint we got from equating the vOC values, we find the total
answer. These circuits will be equivalent if:

R2 = 16Ω, R4 = 20Ω, R1 and R3 are irrelevant
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(4C) (6pts) Pair 3

V1

I1

R1

R2

i

v 20V
10Ω

30Ω
1

5
v0

v0
i

v

Let’s start by finding a Thévenin equivalent for the left. Using your favorite method of choice, we should
find that Rth = R2 and Vth = I1R2 (note that V1 and R1 are irrelevant).

Let’s go ahead and find the equivalent circuit for the circuit on the right, then! This one is complicated by
the dependent source in the mix, but perhaps the most straightforward thing to do is to hold i constant and
solve for v in terms of i (from which we can pick out the Thévenin voltage and Thévenin resistance).

One way of holding i constant is to pretend that we’re hooking up a current source between the terminals:

20V
10Ω

30Ω
1

5
v0

v0

v i

Now if we solve for the voltage v in terms of i, we should be able to pick our the values we need. From here,
it’s just math. We’ll use the node method and assume that the bottom node is our ground (0V reference).
Then we’ll write KCL at the top-right node, which should allow us to solve for everything. Here we go (and
we’ll go ahead and sub 20V − v = v0 as well):

20V − v

10Ω
+

1

5
(20V − v) + i =

v

30Ω

2A − v

10Ω
+ 4A − v

5Ω
+ i =

v

30Ω

6A + i =
10v

30Ω

18V + 3Ω × i = v

From this, we can see that Vth = 18V and Rth = 3Ω. Combining with the results from the left-hand circuit,
we arrive at our final result, that these two circuits are equivalent if:

I1 = 6A, R2 = 3Ω, R1 and V1 are irrelevant

Page 10



Worksheet (intentionally blank)
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Problem 5, 10 pts: The Resistance is Coming from Inside the House

Consider the following filter being tested in lab:

WAVE GEN R SCOPE

100 mH

For this filter, R is chosen such that the −3dB point of the filter is around 10 kHz.

(5A) (2pts) What is the value of R?
R

L
= 2π · 10 kHz =

R

100 mH

⇒ R = 2π · 104 · 0.1 = 2π · 103Ω

R = 2π × 1kΩ ≈ 6.283kΩ
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(5B) (2pts) What is the gain G of this filter as f → 0Hz? Do not use your numerically
estimated value of R. Instead use R as a symbol in your answer.

As f → 0, jwL → 0

⇒ vIN = vOUT ⇒ G = 1

G(f → 0) = 1

(5C) (2pts) With this value of R, what is the gain of this filter as f → ∞? Do not use
your numerically estimated value of R. Instead use R as a symbol in your answer.

As f → ∞, jwL → ∞

⇒ vOUT = 0 ⇒ G = 0

G(f → ∞) = 0
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When the circuit proposed above is measured in the lab, the values do not agree with what
you found on the previous page. Instead, G(f → 0) = 1

2
≡ −6dB.

We account for this by modeling the inductor as having some series (“parasitic”) resistance
(from the long coil of wire) as well as the desired inductance:

WAVE GEN R SCOPE

100 mH

RL

(5D) (4pts) Determine the value of RL and find the frequency at which the gain of the
filter will be 1

2
√
2
≡ −9dB.

As ω → 0, the inductor looks like a short, so we just have RL and R in series with each other. They
form a voltage divider, and in order for the voltage to be cut in half (our gain of −6dB), we need
RL = R.

Since RL = R, this cuts the time constant of our filter in half from what it was before, and the knee
frequency doubles. Since we originally targeted 10kHz, the new cutoff frequency will be at 20kHz
instead.

RL = R f−9 dB = 20kHz
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Worksheet (intentionally blank)
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Problem 6, 18 pts: Motor Races

Each circuit on the facing page contains several motors. Each motor can be modeled as a
resistor with a positive, finite, non-zero resistance Rm, and all motors have the same Rm

value. Assume that the speed of a motor is proportional to the voltage drop across it.

(6A) (18pts) For each of the circuits below, sort the motors in order of increasing speed
(regardless of direction). Enter your answer for each circuit as a sequence of numbers
from slowest to fastest, with < or = in between. For example, if M2 is the slowest
motor in some circuit, then M3 and M1 are moving at the same faster speed, and M4

is the fastest motor, you should write the following in the box:

M2 < M1 = M3 < M4

Circuit 1

Slowest Fastest

M1 = M2 = M3

Circuit 3

Slowest Fastest

M2 < M1 = M3

Circuit 5

Slowest Fastest

M1 = M2 = M3 = M4

Circuit 2

Slowest Fastest

M1 = M2 < M3 = M4

Circuit 4

Slowest Fastest

M5 = M4 < M3 < M2 < M1

Circuit 6

Slowest Fastest

M1 = M2 = M3 = M4 = M5 < M6
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M1

M2

M3

10V

Circuit 1

M1 M2

M3
M4

10V

Circuit 2

1kΩ

1kΩ

10V

M1

M2

M3

Circuit 3

1kΩ

1kΩ

10V

M1

M2

M3

M4

M5

Circuit 4

M1

M2

10V

M3

1kΩ

M4

Circuit 5

M1

M2

M3

10V

M6

M5

M4

Circuit 6
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Problem 7, 21 pts: Step Up

Shown below is an underdamped second-order parallel-resonator network with three labeled
currents.

C

iC

L

iL

R

+

−

v

iR

(7A) (8pts) For each of the six statements given below, circle the correct completion.
Briefly explain your reasoning in the space below the statement completion.

• If the resistance R is increased, the quality factor Q will · · · Q = R/
√
L/C

***· · · increase.*** · · · decrease. · · · remain unchanged.

• If the capacitance C is increased, the quality factor Q will · · · Q = R/
√
L/C

***· · · increase.*** · · · decrease. · · · remain unchanged.

• If the inductance L is increased, the quality factor Q will · · · Q = R/
√

L/C

· · · increase. ***· · · decrease.*** · · · remain unchanged.

• If the resistance R is increased, the period of oscillation T will · · · T ≈ 2π
√
LC

· · · increase. · · · decrease. ***· · · remain unchanged.***

• If the capacitance C is increased, the period of oscillation T will · · · T ≈ 2π
√
LC

***· · · increase.*** · · · decrease. · · · remain unchanged.

• If the inductance L is increased, the period of oscillation T will · · · T ≈ 2π
√
LC

***· · · increase.*** · · · decrease. · · · remain unchanged.
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Shown below are four current waveforms displayed as functions of time. Three of the
waveforms correspond to the labeled resonator currents.

0 2 · 10−3 4 · 10−3 6 · 10−3 8 · 10−3 1 · 10−2 1.2 · 10−2 1.4 · 10−2

−2

−1

0

1

2
AB

C
D

time (seconds)

C
ur

re
nt

(a
m

ps
)

(7B) (2pts) Estimate the quality factor Q for the resonator.

Q = 2.5

Following the dashed envelope for waveform D, it takes about 1.25 cycles for the waveform to drop
to 20% of its original amplitude. It therefore takes about 2.5 cycles for the waveform to drop to 4%
of its original amplitude. So, Q ≈ 2.5.

(7C) (2pts) Assuming that R = 4 Ω, estimate C and L.

C = 400 µF L = 1 mH

Note that T ≈ 0.004 s. Combining the expressions for T and Q given above, C = (QT )/(2πR) =

400 µF. From the expression for the period, L = T 2/(4π2C) = 1 mH.
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(7D) (9pts) For each current listed below, identify the corresponding waveform in the figure
of currents by circling the waveform letter, and provide a brief explanation of your
reasoning in the box below. Both diagrams are repeated here for your convenience.

0 2 · 10−3 4 · 10−3 6 · 10−3 8 · 10−3 1 · 10−2 1.2 · 10−2 1.4 · 10−2

−2

−1

0

1

2
AB

C
D

time (seconds)

C
ur

re
nt

(a
m

ps
)

C

iC
L

iL

R

+

−

v

iR

iC → Waveform A ***B*** C D

iL → Waveform A B ***C*** D

iR → Waveform ***A*** B C D

Explanation: Since the resonator is reasonably underdamped its two largest currents are iC
and iL; iR is small so as to have low loss. The two largest currents are B and C, so iR must
be either A or D. The positive peak of iR occurs when v exhibits a positive peak, which in
turn occurs at the end of the positive portion of iC, that is, at the time of the maximum
charge in the capacitor. Given that iC must be either B or C, and that iR must be either
A or D, the only possible combination is for iC to be B and iR to be A. Then, iL must be
B. Alternatively, since the resonator is lightly damped, its operation can be viewed as being
in a quasi-sinusoidal steady state. In the sinusoidal steady state, v, and hence iR, would
lead iL and lag iC, both by approximately 90 degrees. The only such arrangement of current
waveforms is B leading A leading C. This yields the same assignment of labels to currents.
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Problem 8, 16 pts: Ringing and Stepping

The frequency response of |Vout/Vin| for a series RLC circuit is given below where Vin is the
complex amplitude of a sinusoidal steady-state voltage vIN, and Vout is the corresponding
amplitude at the indicated output port.

−
+vIN(t)

L
C

R

+

−

vOUT

103 104 105 106 107
−60

−50

−40

−30

−20

−10

0

Frequency, ω (rad/s)

20
lo

g|
V

ou
t/
V

in
|
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(8A) (4pts) Use the graph on the previous page to estimate the Q factor of this circuit.

Q =
ω◦

∆ω

ω◦ = 105rad/s
∆ω ≈ 2.0 × 104rad/s

Q =
105rad/s

2 × 104rad/s = 5

Q = 5

(8B) (4pts) Given that R = 10Ω, estimate L, and C.

ω◦ =
1√
LC

Q =
1

R

√
L

C

C =
1

Rω◦Q
= 2 × 10−7F

L =
1

Cω2
◦

= 5 × 10−4H

L = 5× 10−4H C = 2× 10−7F
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(8C) (4pts) Assume that this circuit is driven by the unit step vIN(t) = VSu(t) at t = 0
where VS = 1V, and the capacitor and inductor are fully discharged for t < 0. Write
an analytical expression for vOUT(t) including R, L, and C (as symbols, NOT using
the numbers from the last part) for t > 0 in the form vOUT = Voute

−αt cos(ωDt+φ)+K
(i.e. determine Vout, α, ωD, φ, and K). The circuit schematic is repeated from part A
for your convenience:

iL(0+) = 0 α =
R

2L

vc(0+) = 0 ω◦ =
1√
LC

vL(0+) = VS = L
diL
dt

ω◦ =
√
ω2
◦ − α2

iL(t) = I◦e
−αt cos(ω◦t + φL) + KL iL(∞) = 0 ⇒ KL = 0

iL(0+) = 0 ⇒ I◦ cosφL = 0 ⇒ φL = ±π

2

diL
dt

=
VS

L
= I◦(−α cosφL − ωD sinφL)

⇒ VS

I◦L
= −α����:0cosφL − ωD����:±1sinφL

⇒ VS

I◦L
= ∓ωD ⇒ I◦ =

VS

∓ωDL

vout = iL ·R = I◦ ·Re−αt cos (ωDt +�
�>

±π
2

φL)

Sign choice because dv◦
dt (t = 0) > 0 by current direction.

vOUT(t) = I◦Re−αt cos (ωDt− π
2
)
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(8D) (4pts) Sketch the time domain response of vOUT(t). Make sure to label your sketch
with the initial value of vOUT, final value of vOUT, and any periods of oscillation or
timescales of exponential decay that appear in the problem. For full credit show all
the relevant calculations.
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Problem 9, 14 pts: New First Order

Shown below is the topology of an op-amp-based filter having sinusoidal steady-state input
with complex amplitude VIN and output amplitude VOUT. The filter has two “to-be-designed”
networks, N1 and N2.

−

+

N1

−
+VIN

N2

+

−
VOUT

(9A) (2pts) Write an expression for the transfer function, H = Vout
Vin

, assuming that the
impedances of networks N1 and N2 are Z1 and Z2, respectively.
Inverrting amplifier topology:

⇒ VOUT

VIN
= −Z2

Z1

H = −Z2/Z1
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(9B) (12pts) For each of the magnitude ( |H| =
∣∣∣VOUT

VIN

∣∣∣) plots provided, select an N1 and
N2 from the list of options that will implement the desired response. Note that there
may be more than one correct design.

A B C D

E F G H

Fill in each box indicated below with the appropriate letter label from the table above.
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A B C D

E F G H

Fill in each box indicated below with the appropriate letter label from the table above.
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Problem 10, 12 pts: Fight the Power

Shown below are three networks involving the same current source, and separately a resistor,
a capacitor and an inductor. All three networks are at rest prior to t = 0. For t ≥ 0,
the current source in all three networks sources a ramping current i(t) = It/T . For each
network, determine the power P (t) produced by the source for t ≥ 0, and the total energy
E(T ) delivered by the source by the time t = T .

(10A) (4pts)

i(t) R

P (t) = Ri2 = RI2t2/T 2

E =
∫ T

0
P (t) dt = RI2T/3

P (t) = RI2t2/T 2 E(T ) = RI2T/3
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(10B) (4pts)

i(t) C

v(t) = 1
C

∫ t

0
i(s)ds = (It2)/(2CT )

P (t) = v(t) i(t) = (I2t3)/(2CT 2)

E =
∫ T

0
P (t) dt = (I2T 2)/(8C)

P (t) = (I2t3)/(2CT 2) E(T ) = (I2T 2)/(8C)

(10C) (4pts)

i(t) L

v(t) = L di/dt = LI/T

P (t) = v(t) i(t) = LI2t/T 2

E =
∫ T

0
P (t) dt = LI2/2

P (t) = LI2t/T 2 E(T ) = LI2/2
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