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The problem of forward circuit analysis (as opposed to circuit design,
which is a more challenging problem), is that you are given a circuit
topology and a list of circuit components along with the parameters
that define them, and asked to determine the current and voltage
everywhere.

In this model, the topology and the circuit elements and their
parameters are the environment or fabric that establishes how the cir-
cuit behaves. The current and voltage everywhere are the responses
that we are interested in solving for.

The problem is fundamentally that each branch has two variables,
i and v, but only provides a single equation. We are thus missing
one equation for each branch, and the bigger the circuit gets, the
bigger the problem we have in analyzing the circuit.

In addition to the branch or constitutive relations we discussed in
our earlier notes, we will need to construct more equations before we
can solve the circuits. We construct those remaining equations with
Kirchhoff’s laws.

Kirchhoff’s Current Law

Systems that can be represented by circuits must conserve current
through nodes. Thus current into a node must equal current exiting
a node.

i1

i1 = i2
i2

This equality is true no matter how we draw the arrows, but we
do have to be careful about the sign. For example, if both arrows are
pointing in, then we instead write it like this:

i1

i1 = −i2
i2

Or we can also conceptualize the system differently and say “the
total current entering any node must be zero” or equivalently “the
total current exiting any node must be zero.” All these statements
are equivalent, and the underlying currents will be the same, but
the numerical results will have signs that depend (of course) on the
choice of arrow directions in the branch labels.
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If we extend the system to multiple branches entering, we need to
include a term for every branch.

i2

i3

i4i5

i1

Sum of current in = 0 ⇒ i1 − i2 − i3 + i4 − i5 = 0

Sum of current out = 0 ⇒ −i1 + i2 + i3 − i4 + i5 = 0

Sum of current in = Sum of current out ⇒ i1 + i4 = i5 + i3 + i2

Again, the equations we get will differ depending on how we choose
the current arrow directions, but only in the sign, not in the numeric
value.

The best way I find to think of this is that the current represents
the flow of an incompressible fluid through a set of pipes. Any fluid
entering a junction of pipes must also be coming out through some
other port of the junction. There are no sources of “new” fluid (like
a faucet) in the system, and no “drains”, i.e. nowhere the fluid can
disappear to.

Kirchhoff’s Voltage Law

When two circuits are combined, their branch voltage adds just as
you might expect from any additive quantity. If you think about
current as flow of an incompressible fluid, then you an think about
voltage as a change in altitude (i.e. an altitude difference, not just an
altitude). Specifically, think about positive voltage as representing a
drop in voltage. From this conception, it is pretty clear that voltages
will add in series.

+ −
v1

+ −
v2

≡
+ −
v=v1 + v2
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Of course you have to be careful about correctly tracking the dif-
ference between a positive drop in voltage (traveling from ‘+’ to ‘-’
label) or a negative drop (traveling from ‘-’ to ‘+’). If you’re traveling
in the negative-drop direction, you need to include a ‘-’ sign when
adding in that term, i.e.

+ −
v1

− +
v2

≡
+ −
v=v1 − v2

One consequence of this property of voltage is that if one follows a
loop around any loop in a circuit, the total voltage drop must be zero,
i.e. any voltage drop must be countered by a voltage gain somewhere
else in the loop. This statement is known as Kirchhoff’s Voltage Law
or KVL for short.

− +
v2 +

−

v3

−+
v4−

+

v1 v1 + v4 − v3 + v2 = 0

To correctly keep track of voltage drop, one should choose a con-
vention for keeping track of signs in the resulting equation (remem-
ber, circuits are a way to do visual math, so this circuit really repre-
sents some equations). Typically, one goes around the loop clock-
wise, and transfers the first sign one arrives at going around the loop,
but opposite conventions are equally good.

So one could write −v1 − v2 + v3 − v4 = 0 or v1 + v2 − v3 + v4 = 0
which are, of course, equivalent. This is true for any and all possible
loops, and if there are B branches and N nodes, you will generally
get B − N + 1 independent equations.
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−

+

v1

− +
v2

− +
v7

−

+

v5

+−
v6

−

+

v3

+−
v4

Loop 1 Loop 2

Loop 3

Here, we get three equations, but one is degenerate with the other
two, so there are only two useful equations. We’ll leave the proof of
that to you, and just write down the two loop equations.

v1 + v2 − v3 − v4 = 0

−v3 − v7 − v5 + v6 = 0.

Brute Force Analysis

We are going to show a method of circuit analysis that is not an
advisable approach in most situations (unless you happen to be a
computer, in which case feel free to use this method). Soon, you’ll
learn more powerful analytic methods. But for now, this is all you
get.

Brute force analysis, as its name suggests, involves a lot of alge-
bra, but it is conceptually relatively simple. All you have to do is
write down KCL for at least N - 1 nodes in the circuit (where N is
the total number of unique nodes) and write down KVL for all the
non-redundant loops in the circuit (if there are B branches, then there
will be B - N + 1 non-redundant loops around which you can apply
KVL).

With all the KCL and KVL equations written down, you should
have N - 1 + B - N + 1 = B equations.

Now you write down a constitutive equation for each branch in
the circuit. There should be B circuit elements so there should be B
constitutive relations. So now we should have 2 B equations.

Now how many unknown are there? Well, each branch has a
current through it and a voltage across it, so there are exactly 2B
unknowns. Perfect! You have the same number of equations as
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unknowns, and so it should be easy to solve for all the unknown
circuit variables.

Why not do it this way? Well, for even a simple circuit it is easy
to get to dozens of unknowns and dozens of equations, and solving
20 equations for 20 unknowns is possible, but not the kind of thing
anyone really enjoys. . . It is worth knowing that it is possible, but
don’t ever solve a circuit this way if you have any other option.

Combining Circuits

OK, so how should you approach circuit analysis?
One key concept in circuits is the idea of simplification and re-

duction. At first, we will start by simply reducing two elements into
one, or even one into none. But eventually, we will develop powerful
methods in which complex circuits can be reduced to act like a much
simpler circuit consisting of only one or two elements.

We’ll start this exercise by reducing two resistors and sources to
one.

Resistors in series

Resistances in series sum. Here’s the proof for completeness, and
you should be able to derive this if asked, but really you’ll never use
this derivation. . . in fact it’s a good example of brute force analysis
(see above), and once you learn the rule, you won’t have revisit the
derivation.

R1

+ −
v1

i1
R2

+ −
v2

i2

v1 = i1R1 v2 = i2R2

≡
Reff

+ −
v1

i1

v = v1 + v2

i = i1 = i2

v = i1R1 + i2R2

= iR1 + iR2

= i(R1 + R2)

= iReff

⇒ Reff = R1 + R2

So to summarize:

R1 R2
≡

R1 + R2
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Resistors in Parallel

As an exercise, you should try to use a very similar method to derive
the relation for parallel resistors. Again, you should be able to derive
it using brute-force analysis, but once derived, you should just learn
the rule and leave it at that.

R2

R1

≡
Reff

Reff =
R1R2

R1+R2
≡ R1//R2

Where we have introduced the very useful notation R1 //R2 to
represent the expression R1R2/(R1 + R2). When doing algebra, you
should probably keep things in the R1//R2 form as long as possible,
to avoid having to deal with ugly fractions as much as possible.

Note, there are ways to draw resistors in parallel that are not ac-
tually parallel. Parallel just means the devices share terminals, not
that they are actually physically parallel to each other in space. So
the resistors in the sketches below are all electrically parallel, even
though the schematic does not necessarily reflect this:

R2

R 1
R1

R2

and these resistors are not electrically in parallel, even though they
are drawn as such in the schematic:

Conductance

While common convention is to discuss resistance, conductance (the
reciprocal of resistance) is often more useful to use when doing cir-
cuit circuit analysis.
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R=1/G
Conductance

One example of a convenient use of conductance is analysis of
parallel resistors, where Geff = G1 + G2.

R1=1/G1

R2=1/G2

≡
Reff=1/Geff

Geff = G1 + G2

Which is the satisfying result that conductances in parallel simply
add, just as resistances in series do. The way I think about this is as if
pipes are carrying water in parallel. If one pipe conducts G1 and the
other conducts G2 then together they’ll conduct G1 + G2.

Some things to think about: what happens if one of these resistors
has zero resistance (i.e. is a short circuit)? What if it has infinite
resistance (i.e. is an open circuit)?

Combining voltage sources

Just like resistors, circuit sources can be combined to make a single
source.

−
+V2

−
+V1

≡ −
+ Veff=V1 + V2

In this case, two voltage sources in series sum to act equivalently
to a single source with strength of the sum of the original source
strengths.

Combining current sources

Similarly when two current sources are in parallel, their currents
sum. This is fairly straight-forward to derive using Kirchhoff’s laws,
but you should try it if you’re unsure of how to do it.
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I1 I2 ≡ Ieff=I1 + I2

As an interesting aside, when you start to combine voltage sources
in parallel or current sources in series it is very easy to make circuits
that break Kirchhoff’s laws! This seems deeply problematic at first
glance—aren’t Kirchhoff’s laws inviolate laws? Yes and no; while
the physical circuits satisfy Kirchhoff’s laws, it is actually trivial to
draw a “bad circuit” that violates Kirchhoff’s law (because it doesn’t
correspond to a real physical circuit). You can do it with two voltage
sources (or two current sources), and nothing else. Give it a try.

If this bothers you, it’s understandable. However, remember that
circuit drawings are graphical representations of mathematical rela-
tionships between objects. Just as it is possible to write down a set
of mathematical equations that are inconsistent (x = 1; 2 x = 100; both
are valid equations, but they don’t make sense together), it is possible
to draw a circuit that is inconsistent. However, you can remain con-
fident that any real circuit will satisfy Kirchhoff’s laws (within some
physical limits, e.g. that light takes a negligible amount of time to
propagate across your circuit).

As another aside, combining current sources and voltage sources
makes for an interesting exercise. Surprising things happen. We’ll
let you explore this on your own.

Circuit Primitives

A lot of circuit analysis comes down to spotting familiar patterns in
circuits and understanding how they function. Perhaps the simplest
set of patterns are those that involve current and voltage division,
that we’ll discuss here.

Dividers

The basic framework in which to think of a current or voltage divider
is an input/output framework. Throughout our discussion of cir-
cuits, we will consider how circuits process signals, i.e. how they take
some input and modify it in some way to produce an output. One of
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the simplest such processing functions one can execute is current or
voltage division.

A voltage divider assumes that a signal takes a voltage as an in-
put, and produces some fraction of that voltage on its output, i.e.

+

−

vIN

+

−

vOUT=αvIN

where α is some fraction between 0 and 1.
The simplest possible version of this device consists of the follow-

ing network, but it makes some assumptions about the input and
output circuits, namely that the input consists of a perfect voltage
supply (we call this a “low output impedance” network for reasons
that will become clear later) and that the output consists of a perfect
open circuit (we call this a “high input impedance network” again for
reasons we’ll discuss later).

We thus draw this network as follows:

−
+vIN

R2

R1

+

−

vOUT=αvIN

where VIN plays the role of input and vOUT plays the role of output.
Note that we have not specified the output network, but it is assumed
to be an infinite resistance (i.e. an open circuit). Clearly we recognize
that could never really be a useful output---we must have some plans
to use this voltage for something, and very little can be done with
an open circuit! So maybe we will just say it must be a ``very big
resistance’’ load at the output, i.e. big enough so we can approximate
it as an open circuit. By load, we mean a circuit that is attached to an
output port tha typically draws current or voltage off the output.

Because we have not yet really studied advanced circuit analysis
methods, and because brute force analysis is ugly, slow, and painful,
I’m going to argue by intuition here.
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The current through each resistor must be the same (the output is
an open circuit, so no current can go out there). In that case, they are
in series and so can be combined to become Reff = R1 + R2, and so the
circuit is very simple, just a voltage source across a single resistor.

−
+VIN Reff

+

−

v

i

In that case, even brute force analysis is easy, and we can see im-
mediately that from KVL around the loop (there’s only one) v = VIN

and so i = VIN / (R1 + R2).
In that case, looking back at the original figure and applying

Ohm’s law, we get vOUT = i R1. Substituting in the i we solved for,
we find

vOUT = VIN R1 / (R1 + R2).
We have sort of used brute force analysis here, but took some

shortcuts. The result is intuitive: the voltage drop corresponds to the
fraction of the total resistance that is across the output. We call this
result the voltage divider relation.

A similar analysis---left to you to work out on your own---can get
you to solve for the current in the arm of a current divider. How-
ever, a current divider has a completely different framework that it is
based on.

A current divider can also be thought of as an input/output signal
processor, but the input signal is a current and the output signal is a
current.

iIN

iIN

iOUT

iOUT

It might seem strange to see these current arrows not going any-
where, but remember the open terminals mean that the port must
be connected to something. For a current signal, generally the input
circuit (i.e. the source of the current) is approximated as an ideal cur-
rent source, and the output circuit (i.e. the circuit being driven as a
load by the current divider) is an ideal short circuit.

The canonical resistive current divider circuit is as follows:
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IIN

R2

iOUTR1

Again, this circuit would yield to brute force analysis (there are 3

branches, so you would have to solve 6 equations for 6 unknowns),
but a shortcut can be taken by first observing that voltage drop across
each resistor must be the same, and is equal to v = IIN · (R1 // R2)
where we have noticed that the resistors are in parallel and replaced
them with an equivalent circuit consisting of a single resistor with
resistance REFF = R1 // R2.

IIN REFF

+

−

v

From this we can solve for

iOUT = v/R2

= IIN · (R1//R2)/R2

=
IIN

R2
· R1R2

R1 + R2

= IIN
R1

R1 + R2

This is an important enough result that we give it a name: the cur-
rent divider relation. An easy way to remember this relation is that
the second factor represents the ratio of the parallel resistance relative
to the total resistance of the two resistors, which makes sense as the
larger the parallel resistance, the more current will be forced into the
output path of the current divider.

Warning about Dividers

One key warning about dividers is that their limitations are as impor-
tant as their operation. As soon as you actually try to use the divider
on a finite load resistor (i.e. not zero resistance, for current dividers,
and not infinite resistance, for voltage dividers), they stop working
perfectly.
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This non-ideality is evident if one draws the larger circuit, namely
including the load.

−
+VIN

R1

R

RL

+

−

vOUT

This circuit can be analyzed by first combining R1 and RL (the
load resistor) into a single parallel combination with REFF = R1//RL.
In this case, we can actually use the voltage divider itself, but on
this new circuit, and see that vOUT = VIN REFF/(R + REFF). (This will
always be less than VIN R1/(R + R1), which is what you would get
without the load resistor present).

Similarly, one can analyze a current divider with a load resistor
added. This will add to the resistance along that branch, and you
will find that the supplied current will be less than you had origi-
nally expected when analyzing the circuit with a short at its output.

However, that is not generally a problem for us because we are not
concerned with perfection here. A low resistance is probably good
enough for a current divider, but low relative to what? Similarly a
high resistance might be good enough for a voltage divider, but high
relative to what?

For now, we can’t quite say, but when we study Thevenin and
Norton equivalent circuits, we will finally be able to answer that
question.

Glossary

current divider circuit primitive that divides current from a node that
is a fraction of the output node.

equivalent circuit a circuit (usually simpler) that can replace another
one at its terminals and produce exactly the same effects from the
perspective of any external connections.

load circuit attached to an output port that typically draws current or
voltage off the output.
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parallel combination a parallel combination of circuit elements is one
in which current can travel between two nodes through any of the
elements.

series combination a series combination of circuit elements is one in
which current traveling between two nodes must pass through all
of the elements.

voltage divider circuit primitive that outputs a voltage that is a frac-
tion of the input voltage.
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