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As mentioned earlier in these notes, we often talk about “potential”
and “voltage” interchangeably, but that can be confusing. Voltage
refers to a potential difference between points. I will use the term
potential or node potential or sometime (accidentally) node voltage
to refer to the voltage difference between a node and a reference
ground. I will use “branch voltage” or simply “voltage” to refer to a
difference in potential across a single element.”1 1 This situation is slightly confusing

because both measures use the same
units of volts—unfortunately that can’t
be avoided.

This drawing shows a generic circuit element with the nodes la-
beled with their potential values (eA and eB) and the branch voltage
(i.e. v = eA − eB) labeled.

A
eA + −
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B
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As you move from the ‘+’ labeled terminal of a circuit element to
the ‘-’ terminal, if v > 0 the ‘-’ terminal potential will have a lower
value than the ‘+’ terminal. Of course if v < 0, the opposite will be
the case.

Very often, the voltage is unknown, so the node potentials are
similarly unknown. However, there is one particularly simple case:
when the circuit element is a voltage source with strength VS, as
shown below.
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We will use this (perhaps trivial) observation extensively later.
The constitutive relation for the resistor (Ohm’s law), can be repre-

sented just as easily with potentials as with voltage:
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The constitutive relation is normally written v = iR or i = Gv where
G = 1/R is the conductance. However, now this expression can be
written equivalently as i = (eA − eB)G. This may seem like a minor
observation, but we will use it extensively as we apply the node
method, so it is important to be comfortable with it.
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Review: What is a Node?

If you’ve gotten comfortable with the strange way in which we define
a node, you can skip to “supernode” below.

There are a number of ways to draw a node, and a number of
ways to talk about it. From a mathematical perspective (in graph
theory), a node is strictly a point that connects two lines (branches).
Intersections of branches should always be marked by a dot in cir-
cuits, as shown below.

However, from the perspective of potentials, a single node po-
tential can be shared across many physical nodes (i.e. branch inter-
sections), if those nodes are all shorted together, i.e. connected by
zero-resistance wires. When considering potential, we will loosely
refer to such an assembly as a ‘node’ even though of course it is not
quite technically a single node.2 2 You may remember from your physics

classes that we are free to choose any
node we wish to be our 0 reference
(‘ground’). We will specify this refer-
ence node with the following symbol:

where the open circle will connect to
the reference node.

The dashed line below outlines the collection of two nodes that, in
this case, share a single node potential. We will call this a node, even
though from a mathematical/graph theory perspective, it is actually
two nodes.3

3 It is common in complicated circuit
schematic diagrams to use labels
to refer to nodes that are implicitly
connected by a short circuit. This
practice reduces the number of lines
required to draw the circuit, and
reduces clutter.

Example

To test your comfort level with a node, consider the circuit diagram
shown below. Try to solve for the effective resistance between nodes
A and B, RAB.

See the end of the notes for the solution.

A
R R R

B

Supernode

The term supernode is used when referring to a subcircuit that we
will treat as a single node from the point of view of Kirchhoff’s cur-
rent law.



6.200 lecture notes: circuit analysis with the node method 3

Although we think of Kirchhoff’s current law as applying only at
a true (mathematical) node, it can also be used to show that the sum
of the currents into (or out of) any simply connected subcircuit must
be zero. This result occurs because the underlying physical principle
(constant charge density in the circuit) applies to whatever volume
of space we select. This theorem can be derived from Kirchhoff’s
Current Law–it’s a worthwhile exercise to try, if you feel so inclined.

doesn’t matter
what’s in here

or how it’s connected
internally.

i1

i2

i3

For this system, i3 − i1 + i2 = 0, regardless of what is contained in
the circle, assuming there are no other connections into or out of it.
Applying this same concept to an unrelated circuit is shown below.

i2 i4

i1 i3 i5

For the indicated subcircuit boundary, we can write the subcircuit
variant of Kirchhoff’s law as i1 + i2 + i4 − i5 = 0. Notice, that i3
does not appear in this form, as it does not cross one of the region
boundaries.

We call the subcircuit contained in the indicated boundary a ’su-
pernode’ and it will come in useful in node analysis when dealing
with voltage sources that are not connected to a ground.

Node Method

Armed with an understanding of what a node is, what a node poten-
tial means, Kirchhoff’s current law, and the concept of a supernode,
we will be able to solve some very challenging circuits quite quickly.
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The node method is entirely derivable from the brute-force anal-
ysis method, merely by adding the concept of a node potential. The
inputs are the same: the network topology, Kirchhoff’s laws, and
the constitutive relations of the circuit elements. A computer could
simply accept these inputs and perform the analysis. However, the
node method is a process for applying these inputs that minimizes
the complexity of the algebraic expression that results. It is easier to
construct and to solve than other approaches.

More importantly, the node method introduces a way to think about
circuits that will help you accumulate the right kind of intuition and will
eventually permit you to work with circuits quickly and creatively.

We will introduce the node method by way of the following exam-
ple.4 4 I have deliberately drawn this diagram

to not be in standard form (unlike most
diagrams you’ll find in text books),
because at this stage in the class,
practice working with the topology of
circuits is still very beneficial.

−
+V1

−+

V2

R5

i5

R3R1

I◦

R2

R4

Notice that R2 and R4 have leads that cross but do not connect. You
can tell that they do not connect because there is no solid dot drawn
at their intersection.5 5 Professional circuit designers and

design software avoid ever having four
wires connect at the same point, and
will insert a small offset between two
of the wires to avoid such situations, as
shown below.

The node method has 6 major steps.

1. Identify your nodes: To use the node method we have to know
what our nodes are... but as we discussed at the start of these
notes, that can be tricky. It is made even more tricky because we
might need to use supernodes to simplify the analysis, and these
must also be identified at this step. Luckily, in this first example
supernodes won’t be necessary. We start our analysis by looking at
the circuit and figuring out what the nodes are. At first, you may
find it helpful to actually highlight them, as shown below.
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At this point, we can make a simplification of the circuit if we
want to. It won’t change the math much, but it will simplify the
way we think about the problem a bit, so I would say it is worth it.

To achieve the simplification, look at the circuit above and think
for yourself if any of these resistors are in series or parallel, and
thus can be reduced?

It might not be obvious at first, but R2 and R3 connect between the
same nodes (green and orange/brown) are thus are in parallel. We
can thus reduce them to a single resistor of value R2//R3, and will
do so in our subsequent diagrams.6 6 The astute reader might notice that

we could further combine the result-
ing R2 //R3 combination with R5 to
eliminate one of the nodes from our
calculation entirely. We chose not to
do this for this example just because
it makes the example too easy–there
would only be a single node equation,
which would be quite trivial to solve...
but be alert to simplification opportuni-
ties when you do your problems!

2. Choose a reference node: In this next step, we want to select
whichever single node connects to the most voltage sources to be
our ground node. This will only be the bottom node if the circuit
is drawn in standard form, which will not always be the case.
Also, if there is a tie (two nodes have the same number of directly
attached voltage sources), we can just pick one of the tied nodes at
random. We will set the potential at this node to be zero.

In the example shown, the top-left (blue) node is connected to
both voltage sources, and is thus the best choice for the ground.
We label it accordingly, using our conventional reference ground
symbol (with name e0 for clarity), as shown below.
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3. Identify any floating voltage sources and label the supernodes:
If any of the voltage sources are not connected to ground, they are
“floating” and will be used to form supernodes. We’ll explain this
step later, for now you can just ignore it, because in this example
there are no floating voltage sources.

4. Label the node potentials: This process has two or three sub-
steps, the details of which depend on the circuit topology.

(a) Label known Potentials: Some of the node potentials are
immediately determined given the reference and the strength
of the voltage sources connected to it. For each of these nodes,
label them with the appropriate voltage (being careful of the
sign of the source).

(b) Label unknown node potentials: For each remaining node,
label it with a variable name. By convention we use e1, e2, ... or
eA, eB, ... to label our unknown (variable) node potentials.

−
+V1

−+

V2

R5

i5

R3//R2R1

I◦ R4e0 = 0V

−V2

V1 e1

e2

We are now ready to shift from a graphical language to an alge-
braic language.
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5. Write out Kirchhoff’s current law: For each node (or supernode–to
be discussed in a later example) use KCL to write an equation that
includes all the branches connecting to that node.

Let’s do that now for the node associated with potential e2. We
are going to skip one step in that process that in the past we’ve
included—we are not going to define current variables at all.7

7 This immediately reduces the number
of unknown variables in the circuit by a
factor of two relative to the brute force
analysis method! Instead of having to
solve for all branch voltages and branch
currents, we will only need to solve for
branch voltages (encoded now as node
potentials).

Instead, we are just going to use the node potentials and Ohm’s
law to write down the current in a single step.

For example (for the node associated with e1), consider the current
through R1 entering the node of interest. The voltage across the
resistor is V1 − e1 so the current through it, from Ohm’s law, is
just (V1 − e1)/R1. If you remember the concept of conductance,
we can write this equivalently as (V1 − e1)G1 where G1 = 1/R1.
I prefer working with conductance when writing down current
because it avoids manipulating quotients, which can be cum-
bersome. For the rest of the problem, we will use conductance
instead of resistance, so G2 = 1/R2, G3 = 1/R3, G4 = 1/R4,
G5 = 1/R5 and, conveniently, the parallel combination conduc-
tance 1/(R3//R2) = G2 + G3.8 8 Conductance values in parallel sum,

so for conductances G1 and G2 in
parallel, the effective conductance
Geff = G1 + G2.

Getting back to e2, we can sum the currents into that node.

(−V2 − e2)G5 + (e1 − e2)(G2 + G3) = 0.

The first term in this expression is the current through R5, the
second is the current through the R3//R2 combination.

Now we can do the exercise for e1, starting with R1, then dealing
with each branch going around the node clockwise.

(V1 − e1)G1 − I◦ + (0 − e1)G4 + (e2 − e1)(G2 + G3) = 0.

Each of the three terms in this expression corresponds to current
entering from one of the branches.

6. Solve for Node Potentials: Looking carefully at these two equa-
tions, you’ll notice that only two unknown variables exist... the
rest are element parameters, i.e. resistor values or source strengths,
and are thus known. We have thus reduced a circuit with a large
number of unknown variables (every current and voltage across
8 elements, or 16 unknowns!) to two unknowns, simply by ap-
proaching the problem strategically.

Any number of computer software tools can now be used to solve
this problem. My preferred tool is the Python library Sympy, so
I will illustrate that method here, but any method you like will
work. Most advanced pocket calculators can solve this problem.
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Don’t be a hero and make a mistake—learn how to use your cal-
culator to quickly solve problems like this without making trivial
errors.

from sympy import *
# define required symbols

e1, e2 = symbols(’e1, e2’)

V1, V2, G1, G2, G3, G4, G5, Io = symbols(’V1, V2, G1, G2, G3, G4, G5, Io’)

R1, R2, R3, R4, R5 = symbols(’R1, R2, R3, R4, R5’)

# define equations, written with conductances for brevity

eq1 = (-V2 - e2) * G5 + (e1 - e2)*(G2 + G3)

eq2 = (V1 - e1) * G1 - Io + (0 - e1)*G4 + (e2 - e1) * (G2 + G3)

# substitute resistances because that’s how we want the answer

substitutions = [(G1,1/R1),(G2,1/R2),(G3,1/R3),(G4,1/R4),(G5,1/R5)]

eq1, eq2 = eq1.subs(substitutions), eq2.subs(substitutions)

# solve and simplify

soln = simplify(solve([eq1, eq2], [e1, e2]))

print(soln)

e1 : −IoR1R2R3R4−IoR1R2R4R5−IoR1R3R4R5−R1R2R4V2−R1R3R4V2+R2R3R4V1+R2R4R5V1+R3R4R5V1
R1R2R3+R1R2R4+R1R2R5+R1R3R4+R1R3R5+R2R3R4+R2R4R5+R3R4R5

,

e2 : −IoR1R2R4R5−IoR1R3R4R5−R1R2R3V2−R1R2R4V2−R1R3R4V2−R2R3R4V2+R2R4R5V1+R3R4R5V1
R1R2R3+R1R2R4+R1R2R5+R1R3R4+R1R3R5+R2R3R4+R2R4R5+R3R4R5

The problem of course can also be solved by hand using standard
linear-algebraic methods.

7. Use Node Potentials: The node potentials are typically not an end
in themselves. We can only measure voltage differences or cur-
rents, not abstract node potentials. Thus problems usually ask us
to determine one of these measureable quantities. However, they
are readily determined based on the calculated node potentials. In
this case, we are asked to find i5 = (−V2 − e2)/R5.

i5 =
(R2 + R3)(IoR1R4 − R1V2 − R4(V1 + V2))

R1R2(R3 + R4 + R5) + R1R3(R4 + R5) + R2R4(R3 + R5) + R3R4R5
.

Node Method with Floating Voltage Sources

Some circuits do not yield to the standard node method. Because the
node method requires us to sum the currents expressed in terms of
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node potentials, it can only be trivially applied in the case of current
sources or resistors connecting to the node. When a voltage source
is connected between node with unknown potential (and not to the
reference node), another method must be used. Below is an example
of such a case. Suppose, in this case, we wanted to find the indicated
current i3 through R3.

I◦

R2 −+

V1
R4

−
+ V2R1 R3

i3

Looking at this circuit and working through the node method
above, we can select any of the nodes connected to our voltage
sources as ground (because no node has more voltage sources con-
nected to it than any other). Let’s choose the bottom node to be the
ground. If we stopped here while labeling nodes, we would have 3

unknown node potentials to solve for. However, we’d be throwing
out a very key simplifying piece of information: two of those nodes
are connected by a fixed potential V1.

To take advantage of the fixed relationship between nodes set by
V1, we will define a supernode that includes the voltage source V1

and we will sum the current from all the branches that connect to it,
as shown here encircled in red.

I◦

R2 −+

V1
R4

−
+ V2R1 R3

Now, when labeling the nodes, we will include only one node
variable for the supernode (say e1). The other side of the voltage
source will be labeled as a sum set by the source strength (in our case
e1 + V1).
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I◦

R2 −+

V1
R4

−
+ V2R1 R3

e2 −V2

e1e1 + V1

We can then write down the resulting node equations. Starting
with the node associated with e2, and assuming Gn ≡ 1/Rn, 9

9 A quick reminder about the pas-
sive signs convention (it is important
again!). Consider this branch:

A
eA

1/G

+ −
v

i B
eB

Notice that we always label branch
variables (i and v) so the direction of
positive i enters the the positive v label
of the circuit element. With the shown
current arrow orientation, the current
flowing from B to A is −i, while the
current flowing from A to B is i. To find
i, we then apply Ohm’s law i = Gv
where v = eA − eB to write i, the current
into B, as G(eA − eB). The current from
B to A is thus −G(eA − eB).

I◦ − e2G1 + (e1 + V1 − e2)G2 = 0.

For the supernode, we need to look at all the branches that put
current into it. These include R2, R3, and R4. Working through each
of these in turn (but ignoring everything inside the supernode), we
find

(e2 − (e1 + V1)) G2 − e1G3 + (−V2 − e1)G4 = 0.

Again, we find ourselves with two equations and two unknowns,
which we solve using Sympy, Mathematica (or your calculator, or
whatever solver you prefer—you can even do it by hand if you want
to suffer). If you wish to do it yourself, you can check your answer
against mine, below:

e1 =
I◦R1R3R4 − R3(V2(R1 + R2) + R4V1)

R4(R1 ++R3) + R3(R1 + R2)
,

e2 =
R1(I◦R4(R2 + R3) + I◦R2R3 + V1(R3 + R4)− R3V2)

R4(R1 + R2 + R3) + R3(R1 + R2)
.

The question originally asked us to determine the current i3,
which, from Ohm’s law, is quick to find once we know e1, i3 =

−e1/R3. Substituting in the equation above, we find:

i3 =
(I◦R1R4 + V2(R1 + R2)− R4V1)

R4(R1 + R2 − R3) + R3(R1 + R2)
.

Conclusions

There are a wide range of methods for simplifying circuits and in-
tuiting circuit behaviors that will be introduced later on, and circuit
elements with more complicated constitutive relations (like capacitors
and inductors) will also be introduced. So when the node method is
applied to such circuits, you can get equations that are a lot harder
to solve than the static linear equations shown here, but the node
method can still be applied to these complicated systems.

Really, the node method is the last analytic method you’ll need to
learn to analyze the circuits in 6.200. In terms of pure analytic circuit
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tools, having mastered the node method, you should be able to at
least construct equations (some of which may be hard to solve) for
whatever comes along next.

Finally, it is worth mentioning that although we used the node
method here as an exercise, to show you the proper approach, these
particular problems could have been simplified before trying to solve
them by using a technique called superposition that we will discuss
later. By using superposition, we could have avoided the heavy al-
gebra and written down the solutions more or less by inspection. So
stay tuned.

Glossary and Definitions

Floating Voltage Source A voltage source where neither terminal is
connected directly to ground. To be avoided when applying node
method—if floating voltage source cannot be avoided, use supern-
odes to accommodate in node method.

Ground Chosen reference potential of 0V, typically (but not always)
referenced to earth ground. Also called ground node or reference
node although there are subtle difference between these two that
are not important at this stage.

Node Equations Linear equations that result from using the node
method. If N is the total number of nodes, and M is the number of
voltage sources, in general there will be N − M such equations.

Node Method Method of analyzing circuit using node potentials.
Alternative to the loop method.

Node Potential See Potential.

Node Voltage See Potential.

Potential Synonym to node potential or node voltage (not preferred)
meaning the value of the electrostatic potential at a node refer-
enced to some reference node.

Reference node Node with potential set artificially to zero for the
purposes of nodal analysis (not necessarily the actual physical
ground node of the circuit). Despite this difference, often referred
to informally as the ground node or just ground.

Subcircuit Collection of connected circuit components that can be
enclosed in contiguous boundary within a larger circuit.

Standard Form Circuit drawing style in which signals move from left
to right (inputs on the left, outputs on the right), ground is placed
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at the bottom of the circuit, and the number of unconnected wire
crossings are minimized. Sources are typically drawn vertically.
Not all circuits will be presented in standard form, and in some
cases redrawing in standard form greatly simplifies the acquisition
of intuition about a circuit.

Supernode An enclosed subcircuit used in Kirchhoff’s current law as
if it were a node, i.e. the currents into or out of it are summed and
set to zero.

Example Solution

The key insight is realizing that each of the resistors in the example
connects node A to node B. The coloring in the diagram below might
help you visualize this. Thus the three resistors are in parallel, so
RAB = R/3.

A
R R R

B
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