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Because capacitors and inductors can absorb and release energy, they
can be useful in processing signals that vary in time. For example,
they are invaluable in filtering and modifying signals with various
time-dependent properties.

To be able to control and understand the effects of capacitors and
inductors, one has to first of all understand how these elements in-
teract with other devices in a circuit. Here, we focus on how they
interact with resistors and sources.

Review of State

Recalling what was discussed in the last set of notes, inductors and
capacitors have an internal state that affects their behavior.

As we discussed, the devices have constitutive relations that are
closely analogous to those of sources. Capacitors source a voltage
Q/C and inductors source a current Λ/L, but this simple picture
isn’t quite sufficient. The issue is that Q and Λ change depending on
the current and voltage across the device. As a result, the simplifi-
cation suggested by the source model is overly naïve. Here, we give
you a first example where state can decay and thus change.

Decay of Charge in a Capacitor

Before we try to consider complicated situations, let’s consider a
circuit consisting only of a capacitor and a resistor. Suppose the
capacitor has an initial charge on it Q◦ so that its voltage at time
t = 0 is VC(t = 0) = Q◦/C. We know that the capacitor will act as a
voltage source at the start but soon the charge on it will change and
so its voltage will change. So how does the system behave?

C

iC

R

+

− iR

+

−

vC

Q(t = 0) = Q◦

Let’s define the loop current iC and then do KVL around the loop
and see what we get:

vC + iCR = 0.

In case you find the signs confusing here, notice that iC = −iR.
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But we know iC = C dvC
dt , which we can back-substitute into the

KVL equation.

vC + RC
dvC

dt
= 0

This is a first-order homogeneous ordinary differential equation
(really trips off the tongue, doesn’t it) and can be solved by substi-
tution of a trial answer of the form vC = Aest where A and s are
unknown coefficients.

First of all, we can verify that the overall structure of our solution
seems about right.

Aest + RCsAest = 0

⇒ 1 + sRC = 0

⇒ s = − 1
RC

So yes, the solution seems right as long as s = − 1
RC , i.e. so that

vC(t) = Ae−
t

RC . Notice that we still don’t know anything about A.
Evidently s seems to be something really intrinsic about the equation
itself, and it has to do with the so-called natural response of the
system. We haven’t had to use any information about the state to
derive this value. So what does s represent physically?

Notice that s has units of 1/time, so it represents a rate of some
sort. We call this rate the decay rate and define a new value τ with
units of time such that s = 1/τ. τ = RC and is called the time
constant, as it sets the timescale over which the voltage decays.1 1 Exponential decay is an important

concept in its own right. If you’re not
familiar with its properties, you’re
encouraged to look for resources
elsewhere to learn more about it, as
knowledge of exponential decay is
important to your understanding of
first-order circuits.

Note that when R = ∞, τ = ∞, i.e. the larger the R, the slower
rate of decay and the longer the time constant of the system. This
behavior is intuitively satisfying—a large resistor would be expected
to prevent charge from leaving the capacitor, while a smaller resistor
might hasten the decay of the charge.

The starting condition of the system (namely that the initial charge
is Q◦) can be used to determine A. We know that vC(t) = Ae−

t
RC so

substituting in t = 0 and noting that vC(0) = Q◦/C, we find:

A =
Q◦
C

⇒ vC(t)t>0 =
Q◦
C

e−
t

RC .

We can determine the current then in one of two ways. We can
either start again with a new analysis and new differential equation
(which will have similar form), or we can now take the derivative of
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Figure 1: Figure showing decay of vC
in response to an initial state of the
capacitor, charge Q◦.

the voltage that we already solved for. The latter solution is much
easier.

iC(t)t>0 = C
dvC

dt

⇒ iC(t)t>0 = − Q◦
RC

e−
t

RC .

Decay of flux in an Inductor

Very similarly, we can analyze first-order circuits involving decay of
the flux from an inductor. The problem is set up analogously to the
capacitor problem where we envision an inductor, across which a
resistor exists.

L

−

+

vL

iL

R

+

− iR

Λ(t = 0) = Λ◦

Let’s start with the intuition this time: given the tendency of in-
ductors to act as current sources, we would expect a larger inductor
to tend to retain flux more effectively than a small one. Conversely,
we would expect a smaller resistor to permit flux to remain and a
larger resistor to hasten the decay of the flux. Now let’s check that
the intuition is confirmed by the math.
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Figure 2: Figure showing decay of iC
in response to an initial state of the
capacitor, charge Q◦.

Suppose the system starts out with flux Λ◦ on the inductor and
some corresponding current flowing iL(t = 0) = Λ◦/L. The mathe-
matics is the dual of the capacitor case. We start by doing KCL at the
top node, in which case we get that

iL(t) + vL/R = 0. (1)

But we know from the constitutive relation of an inductor that
vL = L diL

dt . Substituting this in to 1, we find

⇒ iL(t) +
L
R

diL
dt

= 0.

The remainder of the analysis follows the capacitor treatment
above, but in this case we find that the natural response will be:

iL(t) =
Λ◦
L

e−
t

L/R .

Just as the capacitor’s time constant indicated that with an infinite
resistor across it, the capacitor would never discharge, the inductor’s
time constant τ = L/R tells us that if R = 0, the inductor will never
de-flux, i.e. a current will persist in the wire forever.2 2 This so-called persistent current is a

key feature of superconducting circuits,
and is central to the modern revolution
in quantum computing.

Given one of the branch variables (in this case the current) we can
derive the other (the voltage) from the constitutive relation of the
device:

vL = L
diL
dt
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Figure 3: Figure showing decay of iL
in response to an initial state of the
inductor, flux Λ◦.

⇒ vL = − Λ◦
L/R

e−
t

L/R .

Remarkably, this form (Ae−t/τ) generalizes to any of the states or
variables in any similar problem (where a state is simply decaying)!
All the voltages and currents (in the resistor, in the inductor, wher-
ever) and even the flux and charge itself have this form. The only
thing you need to solve for is the constant A. The huge implication
is that you should never again have to solve the differential equation for
this type of a problem. You simply write down the solution and solve
for A. Memorize this form of solution! You’ll need to use it a lot going
forward.

If the inductor or capacitor is instead connected to a resistor net-
work (we’ll consider the case where sources are included next), the
only thing you have to do is figure out what R to use in your τ re-
lation. The (maybe?) obvious thing to do here is to determine the
Thevenin equivalent resistance of the resistor network, and use that
value.

Summary of Natural Response

When dealing with decay of state of an inductor/capacitor, approach
the problem as follows:

1. Identify the reactive element (the capacitor or inductor).
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Figure 4: Figure showing decay of vL
in response to an initial state of the
inductor, flux Λ◦.

2. Calculate the Thevenin resistance it sees connected to it. That sets
the R value for decay.

3. Establish the initial condition (Q◦ or vC(t◦) for a capacitor, Λ◦ or
iL(t = t◦) for an inductor.

4. Replacing a capacitor with a voltage source with strength Q◦/C =

vC(t◦) or an inductor with a current source with strength Λ◦/L =

iL(tcirc) determine the initial value of x(t = t◦) = x◦ where x is
any current or voltage in the problem.

5. Write down the solution in the form x(t) = Ae−t/τ where τ = RC
for a capacitor and τ = L/R for an inductor. Here x(t) is a generic
variable (it can be any current or voltage in the problem!

6. Set x(t◦) = A.

7. Rewrite the solution in its most general form x(t) = x(t◦)e−t/τ .

Step Response

We have seen that inductors and capacitors have a state that can
decay in the presence of an adjacent channel that permits current
to flow (in the case of capacitors) or resists current flow (in the case
of inductors). This decay has an exponential character, with a time
constant of τ = RC for capacitors and τ = L/R for inductors. But
what happens when a source is included? To understand this, we



6.200 notes: energy storage 7

will have to consider the case when the source is suddenly turned on
(or off). This is called a step response. How does the circuit respond
to this sudden change?

Step response provides one way to understand the characteristics
of a system.

Because we can transform any of the circuits we’ve seen so far into
a Thevenin or Norton equivalent, we will study first how a step in
such a circuit affects a capacitor.

Norton Current Step on a Capacitor

Let’s consider a Norton network driving a capacitor with a step at
t = 0.

I(t)=I◦u(t) R

iR

C
+

−
vC

iC

t0

To keep things simple(ish) lets suppose there is no initial charge
on the capacitor, and at time t the current source steps from I = 0 to
I = I◦, i.e. I(t) = I◦u(t) where u(t) is the unit step function :

u(t) =

{
0, t < 1;

I◦, t ≥ 0.

t

I(t) = I◦u(t)

I◦

To understand how the system behaves at the step, we break time
around t = 0 down to 0− ≡ 0 − ϵ and 0+ ≡ 0 + ϵ where ϵ is
an infinitesimal quantity. We know that at t = 0−, the system is
quiescent because I = 0 and always has been.

At t = 0+, however, things get interesting. Performing KCL at the
top node:

I◦ = iR + iC

=
vc(t)

R
+ C

dvC

dt

∣∣∣∣
0+

(2)

To determine the initial condition of the system, we need to know
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vC(0+). We can determine this from the capacitor charge

vC(0+) =
1
C

∫ 0+

0−
iC(t‘) dt‘ +

1
C

vC(0−)︸ ︷︷ ︸
0

.

Because iC(t) is a finite quantity (between 0 and I◦) around t =

0; and the integral is across an infinitessimal gap (from 0− to 0+,∫ 0+
0−

iC(t‘) dt‘ = 0 ⇒ vC(0+) = vC(0−), i.e. vC is continuous in time
across the step.

We can now use KCL to derive a differential equation for the sys-
tem.

I◦ = iR(t) + iC(t)

=
vC(t)

R
+ C

dv(t)
dt

(3)

This is an inhomogeneous first-order differential equation, and can
be solved as such. Admittedly, it is slightly harder to solve than the
one for the state response, but we can approach it in stages. Noticing
its similarity to the natural response, we first solve the homogeneous
form of the equation

CdvcH

dt
+

vcH

R
= 0

⇒ dvcH

dt
+

vcH

RV
= 0, so

vcH = Ae−
t

RC .

Now we have to solve for the inhomogeneous part. Inspired by the
inhomogeneous I◦ term on the left hand side of eq. 3, we try a form
for the inhomogeneous solution vcI = K, and then

vC = vcH + vcI

= Ae−
t

RC + K

Substituting into eq. 3, we get

I◦ =
Ae−

t
RC

R
+

K
R
− CA

1
RC

e−
t

RC (4)

We now have two unknowns, K and A, related by this equation.
Luckily, we know vC(0+) = 0 and can use the trial form of the solu-
tion to show that ⇒ K = −A. From this, we can solve for A. Because
eq. 4 is true for all values of t, it is true for t = 0 ⇒ I◦ = A

R − A
R =

CA
RC ⇒ A = I◦

1
R − 2

R
⇒ A = −I◦R

vC(t) = −I◦Re−
t

RC + I◦R.
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vR(t)

t = 0
vR(t → ∞)

vC(t)

t = 0

vC(t → ∞)

As a check, we confirm vC(0+) = 0 and dvC
dt

∣∣∣
t=0+

= I◦R
RC = I◦

C as we

derived earlier.
This treatment is technically challenging, consisting of

1. deriving the appropriate differential equation;

2. determining the homogeneous and inhomogeneous trial solutions;

3. finding and using the initial conditions; and

4. checking your answer.

Luckily, you should never have to use it when solving a step-response
problem!

How to Actually Do It

Looking closely at the solution we just derived, we see it looks a lot
like the natural response of the capacitor but inverted, starting with
no charge and ending with voltage vC(∞) = I◦R.

We can calculate the current in the capacitor and derive a similar
expression but with different limits:

iC = C
dvC

dt
= I◦e−

t
RC

Notice that iC(0) = I◦ (i.e. all the source current flows in the capac-
itor initially) but by the end, no current is flowing in the capacitor,
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iC(α) = 0. How can we derive this result without going to all the
trouble of the differential equation?

First we remember capacitors exposed to finite currents cannot
change state instantly, therefore vC(0+) = vC(0−) = 0. So the correct
model for this device is a voltage source with strength 0.

Using this circuit model, at t = 0, over the time scale of the initial
step, the current circuit model is:

I◦ R

iR

−
+ V=vC(0−)=0

iC

Now because vC(0+) = 0, then iR = 0 (by Ohm’s law). Thus we
can do KCL at the top node and conclude iC(0+) = I◦. which means
iR = 0, iC(0+) = I◦.3 3 We may also notice

dvC

dt

∣∣∣∣
t=0+

=
I◦
C

.

Now let’s try to find a model that would work at t = ∞.

iC iC = C
dvC

dt
.

We can assert confidently that because all the sources are stable
at t = ∞, the other circuit variables are similarly stable. This ap-
proximation is known as the steady-state approximation. In this
approximation, nothing is changing, thus all derivatives are set to
zero, thus iC = C dvC

dt = 0. So, in the long-time limit, we can replace a
capacitor with an open circuit. We visualize the situation as follows:

−
+Q◦

C
−

+

vC

iC

+

−

vC
t = 0 t = ∞

Observing that

iC(∞) = C
�
�
�
��>

0
dvC

dt

∣∣∣∣
t=∞

= 0

, in the long-time limit, the circuit thus looks like:

I◦ R

iR=I◦

+

−

vC
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These two points (t = 0 and t = ∞) provide the key part of the
story that we can use to solve the problem.

0 t

vC(t)

RC

−I◦Re−
t

RC + I◦R

I◦I◦

0 t

vC(t)

RC

−I◦e−
t

RC

Where we have used the fact that iC = −iR = − v
R to determine

diC
dt = − I◦

RC .
In practice, it is unnecessary to find the derivatives at t = 0, but

the skill of finding them will be useful later on.
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If we now look at an arbitrary exponential decay curve, we can
derive its algebraic form

x(t) = Aest + K

0 t

x(t)

τ

Ae−
t
τ + K

A + K

K

A

0 t

x(t)

τ

Ae−
t
τ + K

A + K

K

A

Therefore “s” comes from the natural response = − 1
τ so for t = ∞,

est = e−
t
τ = 0 therefore x(∞) = K. A is the amplitude of the decay

= x(0) − x(∞) which (importantly) is signed i.e. exponential decay
can actually go up. Think of this more as "approaching equilibrium"
rather than as actual decay.

We can now rewrite the algebraic form as

x(t) = (x(0)− x(∞))e−
t
τ + x(∞).

For our example

vC(0) = 0 , vC(∞) = I◦R , τ = RC

⇒ vC(t)t>0 = (0 − I◦R)e−
t

RC + I◦R

= I◦R − I◦Re−
t

RC
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Similarly

iC(0) = I◦ , iC(∞) = 0

⇒iC(t)t>0 = I◦Re−
t

RC

So you can see that, like the natural response, the step response
can be handled without the need to solve a differential equation.

Inductors and Step Response

Inductors are most naturally treated in terms of their step response to
a Norton network.

I R

+

−

vR

iR

L

+

−

vL

iL

Λ(t = 0−) = 0

We’ll skip the whole painful mathematical approach. Suppose
I(t) = I◦u(t)

t

I

I◦

then let’s ask how the inductor will respond to the step? We know

iL(0+) =
1
L

∫ 0+

0−
vL(t‘) dt‘ + iL(0−)

As long as vL is finite,
∫ 0+

0−
vL(t‘) dt‘ = 0.

⇒ iL(0+) = iL(0−).

Thus iL is continuous across the step. That means all the current
has to pass through the resistor.

I=0

+

−

vL

iL=0

R

−

+

vR

t = 0−

I=I◦ iL=0R

−

+

vR

t = 0+
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We want to find vL(t) and iL(t). From this treatment, we see im-
mediately

vL = vR = I◦R at t = 0+

iL(t = 0+) = 0

Applying the steady-state approximation we find for t = ∞

vL(∞) = L
�
�
��

0
diL
dt

∣∣∣∣
∞
= 0

Using this approximation, at long time the inductor can be replaced
with a short circuit.

I◦ vL=0R

From this we can conclude

iL(t = ∞) = I◦

.

iL(t)t>0 = (iL(0)− iL(∞))e−
t
τ + iL(∞)

= (0 − I◦)e−
t

L/R + I◦

= −I◦e−
t

L/R + I◦

Similarly,

vL(t)t>0 = I◦Re−
t

L/R .

Summarizing how an inductor behaves in the various limits, we
can draw:

Λ◦
L

−

+

vL

iL

iL
t = 0 t = ∞

State and Step Response

The inclusion of an initial state in the problem changes the t = 0−
condition, and thus the t = 0+ condition, but nothing else. As a
result, the overall treatment follows the step response treatment.
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Conclusion

The key takeway is that in response to either a state or a step, capac-
itors and inductors approach an equilibrium with a characteristic
time constant that depends on the Thevenin resistance of the attached
circuit.

Capacitor Inductor
τ = RTHC τ = L/RTH

The characteristic form of the circuit variables are then:

i, v = x

x(t)t>tstep = (x(0+)− x(∞))e−t/τ + x(∞).

where 0+ is the time just after the step. In this time frame, capaci-
tors can be treated as a voltage source with strength of vC(0−) and
inductors as a current source with strength vL(0−), i.e. the current is
continuous in an induction and voltage as continuous in a capacitor.

In the long-time limit, the steady-state approximation applies. In
this case, inductors can be treated as short circuits, and capacitors as
open circuits.

Glossary and Definitions

Decay rate Quantity with units of reciprocal time corresponding to
the rate of exponential decay of a system, i.e. 1/τ where τ is the
time constant of the system.

First order circuit Circuit containing only one circuit element like an
inductor or a capacitor.

Natural response Response of a circuit that starts with a non-zero state
on at least one element and decays with time.

Persistent current Current that circulate indefinitely in a loop (typi-
cally only possible in a superconductor, when all resistances are
identically zero).

Steady state approximation Approximation in which all time deriva-
tives are assumed to be zero because loss has caused all the energy
of the system to disappear. This will only be the case in first-order
systems with no time-varying sources at long time.

Step response Characteristic response of a circuit to a sudden change
in value (a “step”) at an input.

Time constant Duration that describes the characteristic response of a
circuit.
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