
6.200 Lecture Notes: 2nd-Order Circuits
Prof. Karl K. Berggren, Dept. of EECS

April 6, 2023

Imagine a circuit consisting of a single inductor and a single capaci-
tor in a loop, as sketched below, with inductance L and capacitance
C, initial voltage in the capacitor V◦ and current in the inductor I◦.
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Figure 1: L-C circuit. Note how i and v
are defined.

Suppose you are asked to determine the current and voltage in the
circuit subsequently.

We will focus on the capacitor current i and voltage v and notice
from Kirchhoff’s laws that the inductor voltage is also simply v but
the inductor current iL = −i. As a result of these definitions, we
can write the constitutive relations of these two elements in the new
notation as:

i = C
dv
dt

and v = −L
di
dt

(1)

By plugging the left-hand expression for i into the expression for v
and doing a bit of algebra, we find:

v = −LC
d2v
dt2 (2)

=⇒ d2v
dt2 +

1
LC

v = 0, (3)

which in principle we could use standard methods to solve. These
standard methods are described in any number of physics and EE
text books, including the course text book, and yield the well-known
oscillatory behavior of L-C circuits. However, these approaches tend
to be algebraically cumbersome, while yielding little insight into the
underlying processes.

We’ll explore a few different ways of thinking about this problem
here, ranging from more conventional to more abstract, in hopes of
building a deeper underlying understanding of the system.
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First Approach

Let’s use the trial-solution trick we used with first-order equations,
namely try something like v = Aest. Plugging that into 2 we find

Aest = −LCs2 Aest (4)

=⇒ 1 = −LCs2 (5)

=⇒ s = ± j√
LC

= ±jω◦ (6)

(7)

where we have defined ω◦ ≡ 1/
√

LC.
Now, because there are two possibilites for s (s+ = jω◦ and s− =

−jω◦, and because the original differential equation is linear, the
most arbitrary possible solution will be some linear combination of
the two possible trial solutions, i.e.

v = A+es+t + A−es−t (8)

= A+ejω◦t + A−e−jω◦t. (9)

(10)

Because v must be real, we can make a fairly slick observation
now: consider this equation when t = 0. In this case v = A+ + A−.
From this, it follows that A+ must be the complex conjugate of A−.
So now let’s define A ≡ A+ and use the abbreviation c.c. to mean
“the complex conjugate of the previous term,” in which case:

v = Aejω◦t + c.c. (11)

If you imagine Aejω◦t as a phasor (i.e. a vector on the complex
plane), then its complex conjugate is simply a reflection across the
real axis, so summing the two of them will result in twice the real
part of the first term. That’s possible to derive algebraically, but it is
far easier to see using the graphical construction below.
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From this argument, we find

v = 2|A| cos (jω◦t +∠A)

where |A| and ∠A are unknown real-valued numbers (note A ≡
|A|e∠A.

Initial Conditions

This is an initial value problem: if we know the initial current and
voltage, we can derive the current and voltage at all later times. We’ll
use what we know about the system at the start to determine both
the magnitude and phase angle of A.

Evaluating the equation above at t = 0, we find

v(0) = 2|A| cos(∠A) = V◦

and then from the current at t = 0 we can write

i(0) = −C
dv
dt

∣∣∣∣
t=0

= −I◦ = −2C|A|ω◦ sin (∠A)

From these expressions we can solve for the sin and cos of ∠A.

sin(∠A) =
I◦/(Cω◦)

2|A| = I◦

√
L
C

1
2|A| (12)

cos(∠A) =
V◦

2|A| (13)

(14)

which corresponds from the definitions of sin and cos to the fol-
lowing triangle:

∠A

V◦

I◦
√

L
C

2|A|

From which we can derive both the magnitude and phase of A.

4|A|2 =
I2
◦

C2ω2◦
+ =

I2
◦L
C

(15)

=⇒ |A| = 1
2

I◦

√
L
C

(16)

(17)
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and similarly for the angle

∠A = tan−1 (
I◦Zc

V◦
) (18)

where we have defined the characteristic impedance ZC ≡
√

L/C.
Care must be taken with this arctan to not lose track of factors of π.
For this reason, I typically prefer to use the arctan2 function from
the python numpy package ((I personally don’t know how anyone
manages with the traditional arctan function), which would have the
form

∠A = arctan2(V◦, I◦Zc). (19)

In which case signs won’t cancel, and you’ll always know which
quadrant you’re in in the phasor plot.

Having identified |A| and ∠A we now know A entirely, and can
go back to our trial solution, and write down

v(t) =
√

V2◦ + I2◦Z2
C cos (ω◦t + arctan2 (V◦, I◦ZC)) ,

We can then use this to solve for

i(t) = C
dv(t)

dt
(20)

= C
√

V2◦ + I2◦Z2
Cω◦ sin (ω◦t + arctan2 (V◦, I◦ZC)) . (21)

There’s a very real danger of missing the forest through the trees
in all this... so let’s at least try to plot the voltage to get a sense for it:

v

t

T = 2π/ω◦

2|A|

v(t) = 2|A| cos (ω◦t +∠A)∠A

The first takeaway is that the system is oscillatory. Next, observe
that it has a resonant frequency ω◦ = 1/

√
LC that does not depend

on the initial state. Finally, observe it has a phase shift and amplitude
that do depend on the initial state.
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First-Order Differential Equations

To describe the system, we’ll take a momentary abstract diversion.
Consider a very simple pair of coupled first-order differential equa-
tions, very similar to (1) above.

x =
dy
dt

and y = −dx
dt

. (22)

These equations represent a fundamental competition between x
and y. Follow a sample cycle here in which x starts out positive and y
starts out equal to zero:

1. x > 0 so dy
dt > 0 so y starts to be positive and growing

2. y is positive and growing so dx
dt starts to be negative and x starts to

decrease until it eventually reaches zero.

3. Now dy
dt = 0 so y has stopped growing, but x is still decreasing. As

x becomes negative, y will start to shrink. Eventually y = 0.

4. Because y = 0, dx
dt = 0 and x reaches a minimum. But dy

dt = x
is still negative, so y will drop into the negative range, leading to
dx
dt > 0 and x starts to grow.

5. Eventually x crosses zero, rises to a positive value, y similar re-
turns to zero, and the cycle repeats.

This oscillatory cycle is readily understood analytically by multi-
plying the two first-order equations by each other (after first flipping
one of them across the equals sign). This process yields

x
dx
dt

+ y
dy
dt

= 0 (23)

which can be integrated to yield

x2 + y2 = R2 (24)

where we have absorbed the factor of 1/2 from the integral into the
arbitrary constant (which we have taken the liberty of writing as R2

to clarify its relationship to the definition of a circle). Indeed (23)
is just the equation for a circle, where x and y vary based on the
parameter t. The oscillatory trajectory of these variables is thus fun-
damental to the nature of coupled first-order differential equations.1 1 This argument indeed illustrates why

so many oscillatory or "wave" equations
arise in physical systems where forces
exist that oppose each other.

We should note a few subtleties: (1) the oscillatory frequency of
the system is 1 rad/sec; (2) the oscillation on the x-y axis shown in
the sketch above proceeds in a counter-clockwise direction because
of the choice of which equation in (22) got the − sign; and (3) the
quantity x2 + y2 is conserved in the evolution of this system, which
should be really surprising. The conservation of this quantity will be
very important to our intuitive understanding of L-C circuits.
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x

y Figure 2: x-y oscillation.

Mapping Back onto L-C Circuits

This diversion makes it a lot easier to deal with the L-C circuit now.
We can make a simple substitution of variables that will make (1)
look just like (22), and see that the i and v in our case will also be
oscillatory. Substituting ĩ =

√
L/Ci (which, interestingly, has units of

volts) we can rewrite (1) as:

ĩ =
√

LC
dv
dt

and v = −
√

LC
dĩ
dt

. (25)

For parallelism with the more general treatment given above, we
can scale our time unit by defining a new time unit t̃ = ω◦t where
ω◦ = 1/

√
LC. At this point, ω◦ has no physical meaning, it is just

a convenient scaling parameter. Eventually, it is going to be very
important... With this substitution we find:

ĩ =
dv
dt̃

and v = − dĩ
dt̃

, (26)

which is perfectly parallel to the construction given in the previous
section.

Following the same process of cross-multiplying and integrating
that yielded (23) above, we can derive a corresponding equation:

ĩ2 + v2 = R2 (27)

where again we’ve taken the liberty of incorporating messy coeffi-
cients like the

√
LC and the 1/2 into the newly defined constant R for

sake of clarity in illustrating the geometry.
Now the circle looks exactly as it did before, but the axes change

from x-y to ĩ-v.
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Figure 3: ĩ-v oscillation.

As for the subtleties we observed in the analogous section above,
there are a couple changes. First, the oscillatory frequency is no
longer simply 1 rad/sec. Because of the transformation of the time
variable from t to t̃ = t/

√
LC, the new radial frequency is ω◦ =

1/
√

LC. Second, the conserved quantity is now proportional to

L
C

i2 + v2 ∝
1
2

Li2 +
1
2

Cv2 ≡ E

where we have written the quantity in such a way as to clarify that it
is in fact just the total energy of the system. This tells us that the con-
servation of energy results directly from the oscillatory behavior of
these equations (or perhaps we can say that the oscillatory behavior
is a consequence of the conservation of energy).

Because there were no changes in signs, the oscillation on the ĩ-v
axes shown in the sketch above will proceed in a counter-clockwise
direction just as it did in the x-y case. Physically this direction results
from the requirement that current precede charge (and thus voltage)
in a capacitor.

Formulating a Solution

From the intrinsic oscillatory form of the problem, we can quickly
guess the form of a possible solution. Suppose, as we’ve sketched
above, we are interested in the voltage v. At time t the system will
occupy a point on the circle at v(t) and ĩ(t).

It is sometimes going to be convenient (and make things a bit
more concrete) to remind ourselves that ĩ =

√
L/Ci which we can

write ĩ = ZCi where ZC =
√

L/C is known as the characteristic
impedance of the L-C circuit. It is an interesting parameter, as it
has units of ohms, and will substantially contribute to insight in the
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problem.
So looking at figure 3 above, we notice that v(t) = R sin ϕ(t) and

ĩ(t) = ZCi(t) = R cos ϕ(t). Assuming a linear progression of the
phase from some initial phase ϕ◦, ϕ(t) = ωt + ϕ◦ where ω is the
oscillation frequency. These make appropriate trial solutions for the
problem.

Now we just have to figure out ω, R, and ϕ◦.

Finding the Solution

As we mentioned above, ω can be determined by inspection by do-
ing a transformation of the time variable, but this may not provide
much physical insight, so in this case we will backsubstitute our trial
solutions into equation (2), which we repeat here for the reader’s
convenience:

d2v
dt2 +

1
LC

v = 0. (28)

This back-substitution yields:

ω2 =
1

LC
so ω = ± 1√

LC
(29)

where we can ignore the negative solution because we know from
our construction above that the oscillation is counter-clockwise. Thus
the frequency is just

ω =
1√
LC

= ω◦. (30)

This part of the solution is intrinsic to the formulation of the differ-
ential equation, and is general across all simple L-C circuits. Now we
understand why the substitution of time variables above was signifi-
cant: it changed the system from having a radial velocity of 1 rad per
second to having a radial velocity of ω◦.

Now that we’ve solved for ω, we need to work on R and ϕ◦. Un-
like ω◦, for R and ϕ◦ there will not be a single simple expression that
applies for all problems, as these parameters will depend on the spe-
cific state of the capacitor and inductor at the start of the problem.
These are referred to as the boundary conditions of the problem, and
can be quite tricky to determine when you first start out.

Each known state variable at the start of the problem provides one
of the boundary conditions. In the problem as we originally posed
it, the initial capacitor voltage v(0) was V◦ while the initial inductor
current iL(0) = −i(0) = I◦. Transforming these conditions into the
space of our problem, we observe ĩ(0) = −ZC I◦. That observation
provides us with a single point in our ĩ − v graph as shown below.
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ĩ = iZ◦
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Figure 4: ĩ-v initial condition shown.

This graphic immediately yields the radius of the oscillation,

R =
√
(−ZC I◦)2 + V2◦

as well as the initial phase

ϕ◦ = arctan 2(V◦,−ZC I◦)

where I’ve used an explicit arctan 2(y, x) notation to provide a phase
angle between −π and π rather than the usual −π/2, π/2 which
would be insufficient for our purposes.

The final solution for voltage is thus

v(t) =
√

Z2
C I2◦ + V2◦ sin (ω◦t + arctan2(V◦,−ZC I◦))

and for the current is

i(t) =
√

I2◦ + V2◦ /Z2
C cos (ω◦t + arctan2(V◦,−ZC I◦))

where ω◦ = 1/
√

LC and ZC =
√

L/C, and we have remembered to
transform the solution for the current back from ĩ to i by dividing by
ZC.

It should now be clear why we went to such efforts to phrase
the problem in this way–although it makes the formulation of the
problem more complex, it makes finding the initial conditions trivial.
Because that last step is typically the hardest, it is an easier way in
the end to approach the problem.
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Some Final Notes

These few final notes can provide powerful tools in answering prob-
lems quickly and intuitively.

First, note that the oscillation amplitudes of ĩ = iZC and v are the
same, thus in the real circuit the amplitudes of v and i are related
by a constant of proportionality of ZC. The characteristic impedance
thus has units of ohms, and can be used to quickly find the ampli-
tude of one circuit variable if the other is known.

Additionally, note that due to the oscillatory nature, whenever
one of the circuit parameters is maximal or minimal, the other is
zero. If we consider, for example, the energy stored in the capacitor
Cv2

max,min/2 when the current is zero in the circuit, we can observe
that this will equal Ci2max,minZ2

C/2 = Ci2max,minL/(2C) = Li2max,min so
energy conservation comes out of this construction trivially.

Along these lines, observe that from the solution for the radius,

R =
√
(−ZC I◦)2 + V2◦ ,

we can say

R2 =
L
C

I2
◦ + V2

◦ ⇒ CR2/2 = E,

so indeed the expression for the total energy falls out of this con-
served quantity.

Finally, note that while the oscillation frequency of the voltage and
currents is the natural frequency ω◦, the energy in each circuit ele-
ments experiences a maximum when the corresponding state circuit
variables are maximal or minimal, thus the frequency of oscillation of
the stored energy is twice the natural frequency.

Glossary

Characteristic impedance Property of L-C circuit with units of resis-
tance (ohms) that gives the ratio of the maximum voltage to the
maximum current, represented by the symbol ZC. In a simple L-C
circuit, ZC =

√
L/C.

Resonant frequency Property of L-C circuit that determines the natural
frequency at which the system evolves without external influence
represented by ω◦. In a simple L-C circuit, ω◦ = 1/

√
LC.
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