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In electronics, rotary motion plays an important role: the power
coming to our homes often originates from a rotary generator, and
most motors are rotary. Rotary motion is closely associated with
sinusoidal signals—sinusoids can be viewed as the projection of
rotary motion onto one axis. Finally, sinusoidal signals (as we shall
see now) provide a powerful means by which to organize, re-arrange,
switch, amplify, remove, and otherwise control electrical signals.

Sinusoidal Steady State

The simplest treatment of a sinusoidal time-varying signal is in what
is called the sinusoidal steady state. Here, the state of a system fol-
lows a sinusoidal pattern repeating after a time T called the period.1 1 The sinusoidal steady state is a special

case of a more general situation known
as the periodic steady state which you
may have seen in relaxation oscillator
examples. In periodic steady state, the
system repeats after a certain period,
but the pattern need not be sinusoidal.

Here, by state we are referring to all the voltages and currents in the
system.

We need to develop a bit of familiarity with sinusoids generally
before we can study this system much further. As described in figure
1, a sinusoid is typically characterized by a period T, a phase shift ϕ,
and an amplitude A.

v, i ≡ x

t

T = 2π/ω

A

x(t) = A cos (ωt + ϕ)−ϕT/2π

Figure 1: Sinusoidal functions have
three key parameters that define them,
their amplitude, phase, and radial
frequency. These are typically con-
ceptualized relative to a cosine wave
for reasons discussed later in the text.
The temporal period and temporal
phase shift can be calculated from these
parameters using basic formulas.

Different Kinds of Frequencies

The period T can also be related to two types of frequencies. The first
is the traditional temporal frequency, often simply called frequency f ,
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with units of cycles per second, or Hertz (Hz), calculated by f = 1/T,
while the second is known as radial frequency ω and has units of
radians per second. Because there are 2π radians in a cycle (think
again of rotary motion), the radial frequency can be calculated from
the temporal frequency using ω = 2π f .

Phase

The phase of a sinusoidal signal is the value of its argument. Typi-
cally, this is ωt plus some constant phase shift ϕ. Thus ωt represents
the linearly increasing phase of the system, and ϕ is the shift of the
system relative to zero.

However, when speaking loosely about phase in the context of
sinusoidal steady state, we often actually mean relative phase, i.e.
phase at t = 0, or phase relative to a cosine of the form cos (ωt).

Phase shifts are typically considered to be positive when they
are added to the cosine term. This can be confusing because such
a shift represents negative translation of the sinusoidal signal on
the time axis. To see why this is, remember that when we replace
the argument of any one-dimensional function f (x) by a translated
version of it like x − ∆x where ∆x is a constant, the function moves
to the right along the positive x axis. Thus cos (ωt + ϕ) function is
shifted to the left, towards negative time.

The magnitude of the phase shift can be translated into time by
converting it into cycles (by dividing by 2π) and multiplying by the
period T, i.e. ∆t = ϕT/2π.

Amplitude

The coefficient of a sinusoidal signal is called the amplitude. This
quantity represents the deviation from the sinusoid’s average value.
Note that is exactly half the peak-to-peak amplitude that is often
used in a lab.

Offset

Finally, the offset represents a constant value added to the sinusoids.
It is often present in systems, and is one of the reasons why one
cannot divide the world simply into “AC” and “DC”. Often “DC”
signals actually have sinusoidal signals on top of them, thus signals
that are neither purely DC nor purely AC are quite possible.
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Sines and Cosines Approach

We will now start considering how to handle sinusoidal signals ap-
plied to circuits in a steady state. The assumption is that we are look-
ing at the circuit long enough after the signal was applied so that any
start-up transient has decayed away. From a practical point of view,
this means that we have waited much longer than the natural decay
time τ of the circuit for a first-order circuit.

After this section, we will analyze the same or similar circuits
using two different styles of math, to observe the various advantages
and disadvantages of the treatments.

Problem Statement

Consider the circuit below under the assumptions described above.

−
+V◦ cos(ωt)

R

C
+

−
vC

Notice that the voltage source is cosinusoidal and has been for all
time. Let’s try to calculate what the sinusoidal steady-state voltage is
across the capacitor.

We will set the problem up using the same method we used for
the step response problems, namely using KVL and/or KCL to deter-
mine a differential equation that can be solved.

The resulting equation is

dvC

dt
+

vC

τ
=

V◦
τ

cos(ωt).

Approach

The first approach we will use will be trying a solution of the form

vC(t) = A cos(ω′t) + B sin(ω′t). (1)

Substituting this into the differential equation and then solving for
ω′, A, and B we hope to eventually determine vC.

d (A cos(ω′t) + B sin(ω′t))
dt

+
A cos(ω′t) + B sin(ω′t)

τ
=

V◦
τ

cos(ωt).

⇒ −Aω′ sin(ω′t)+ Bω′ cos(ω′t)+
A cos(ω′t)

τ
+

B sin(ω′t)
τ

=
V◦
τ

cos(ωt).
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If we make a guess at this point that our solution will reflect the
symmetry of the applied signal, namely that it will also be in the
sinusoidal steady state, then we can reasonable assume ω′ = ω.
Recall that we are exploring still, so if this solution doesn’t work
out, we could always backtrack and revisit this assumption (but it is
going to work out).

Regrouping the cos and sin terms neatly, we can rewrite this as:(
−Aω +

B
τ

)
sin(ωt) +

(
Bω +

A
τ
− V◦

τ

)
cos(ωt) = 0.

We now observe that for either of these terms to be exactly zero,
their coefficients must each be zero. This is because sine and co-
sine are both time varying functions, so even if we could find some
combination that worked at one moment in time, it would fail at a
subsequent moment. So for this to be true at all times, we have to
conclude:

−Aω +
B
τ
= 0 (2)

Bω +
A
τ
− V◦

τ
= 0 (3)

This is a set of two equations and two unknowns, which we can
then solve. From the first equation, B = Aωτ. Substituting into the
second equation we have

Aω2τ +
A
τ
− V◦

τ
= 0

⇒ A
(

ω2τ +
1
τ

)
=

V◦
τ

⇒ A =
V◦
τ

ω2τ + 1
τ

⇒ A =
V◦

ω2τ2 + 1
Then back-substituting into the trial form (1), we find

vC(t) =
V◦

ω2τ2 + 1
(cos(ωt) + ωτ sin(ωt)) (4)

Understanding the Solution

While this solution may be correct, it is a bit hard to understand.
First of all, one should recognize that the sum of a sine and cosine

term with different amplitudes and the same frequency is itself sinu-
soidal. We will use this fact in the next section to rewrite the solution
as a cosine with a phase shift.
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0 t

vC(t)

In the meantime, let’s look at the relative strength of the coeffi-
cients of the cos and sin terms as a function of radial frequency. We
are asking the question, how will these two terms behave depending
on the frequency of the driving source?

Because the entire solution is multiplied by V◦ (just as one would
expect for a linear system driven by a single source), we can ignore
this term in the coefficient—it will not vary in time or with the fre-
quency. We can essentially instead study vC(t)/V◦, which is a kind of
transfer function, which (for sake of continuity with upcoming mate-
rial) we will call H(ω).2 By calling it a transfer function, we are im- 2 H is typically defined to be the func-

tion of a complex number. Starting with
our next set of notes, we will reuse H
in this slightly different but more con-
ventional style. For now, this definition
serves our purpose.

plicitly viewing the circuit as a transfer of an input signal (the source
voltage) to an output (the capacitor voltage). The signal is modified
by the transfer, but that modification depends on the frequency.

Consider first of all the cos term. The amplitude of this term is
proportional to

H(ω)cos =
1

ω2τ2 + 1
From this expression, we can see that at low frequency (ωτ << 1,

or ω << 1/τ), the coefficient is just 1, which we will write:

H(ω << 1/τ)cos ≈ 1

At high frequency, when ω >> 1/τ, we can neglect the 1 in the
denominator in relation to the ωτ term, and find:

H(ω >> 1/τ)cos ≈
1

ω2τ2

which becomes very small as ω becomes large.
Now considering the sin term, the amplitude of this term is pro-

portional to

H(ω)sin =
ωτ

ω2τ2 + 1
From which we can take the limits when ω is large and small,

finding:

H(ω << 1/τ)sin ≈ ωτ,
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which will be small (much smaller than one). Thus at low fre-
quencies, the cosine term will dominate, and the signal will be little
changed by the presence of the capacitor.

On the other hand, at high frequency,

H(ω >> 1/τ)sin ≈ 1
ωτ

which is also small, but not as small as the cosine coefficient is. In
fact, if we compare the ratios at high frequency, we find

H(ω >> 1/τ)sin

H(ω >> 1/τ)cos
≈ ωτ

.
From this we see that at high frequency, the amplitude of the volt-

age is reduced, but also its phase is shifted by π/2, meaning the
output is now a sine wave, not a cosine.

It thus appears that sinusoidal signals can be modified in both
amplitude and phase, but in a way that depends in complicated ways
on the frequency.

Don’t Phear the Phase

A significant improvement in our analysis of the solution presented
above can be obtained by using trigonometric identities to rewrite the
solution in the form:

vC = A cos(ωt + ϕ).

This is possible by revisiting the equation (4)

vC(t) =
V◦

ω2τ2 + 1
(cos(ωt) + ωτ sin(ωt)) .

At this point, we have to make a very subtle and tricky step: notice
that within the parentheses, the coefficients of the cos and sin terms
are 1 and ωt respectively? Imagine these are the legs of a right angle
triangle, as shown in fig. 2.

In this case, we notice that cos ϕ = 1√
1+ω2τ2 and sin ϕ = − ωτ√

1+ω2τ2 ,
and thus can substitute back into equation (4) to find:

vC(t) =
V◦√

ω2τ2 + 1
(cos ϕ cos(ωt)− sin ϕ sin(ωt))

We can now use the standard trig identity for summing angles
cos(α + β) = cos α cos β − sin α sin β to rewrite this expression as:

vC(t) =
V◦√

ω2τ2 + 1
cos(ωt + ϕ)
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√
1 + (ωτ)2

−ωτ

1

ϕ

Figure 2: Being able to sketch this
construction to quickly identify the
sine and cosines of an angle is a good
skill to have at hand when dealing with
sinusoidal steady state systems. The
need comes up again and again.

where ϕ = atan(−ωτ). It is convenient to express arctans using the
standard C or Python function atan2 or arctan2, in which case we can
write arctan2(−ωτ, 1) which removes any possible ambiguity about
choice of quadrant.3 3 Do better, math.

This form of the solution lends itself much more readily to inter-
pretation. We can, for example, plot the coefficient of the cosine vs.
frequency ω which we define below as H(ω)

vC(t)
V◦

= H(ω) cos(ωt + ϕ)

H(ω) =
1√

ω2τ2 + 1
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Figure 3: Magnitude of coefficient in
front of cosine (H(ω)) vs. frequency for
transfer function where τ = 1 ms.

Now we see clearly the tendency for the signal to fall off at high
frequencies.
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If we plot the phase, we should be able to further understand the
behavior of the system.
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Figure 4: Phase shift of solution rel-
ative to input signal as a function of
frequency f = ω/2π, plotted on a
semi-log axis where τ = 1 ms

Cosines and Phase Approach

Another possible trial solution could take the form

vC(t) = A cos(ωt + ϕ) (5)

where we have assumed (given that we’ve already solved the
problem!) that the solution frequency will equal the input frequency.
We’ve already put the problem into this form, but it is instructive to
instead solve directly from the equation of motion of the system.

−ωA sin(ωt + ϕ) +
A
τ

cos(ωt + ϕ) =
V◦
τ

cos(ωt) (6)

Using the trigonometric identities cos(α + β) = cos α cos β −
sin α sin β and sin(α + β) = sin α cos β + cos α sin β we can rewrite this
as:

−ωA (cos(ωt) sin ϕ + sin(ωt) cos ϕ)+
A
τ
(cos(ωt) cos ϕ − sin(ωt) sin ϕ)− V◦

τ
cos(ωt) = 0

(7)
Observing that for this expression to be true at all time, the coeffi-

cients of the sine terms must sum to zero and the coefficients of the
cosine terms must separately sum to zero, so we get two equations
out of this:

−ωA sin ϕ +
A
τ

cos ϕ − V◦
τ

= 0 (8)
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−ωA cos ϕ − A
τ

sin ϕ = 0 (9)

From (9) we find immediately that ϕ = atan(−ωτ) = arctan2(−ωτ, 1).
Assuming ϕ is known, we can solve (8) for A:

A
(
−ω sin ϕ +

1
τ

cos ϕ

)
=

V◦
τ

⇒ A =
V◦

−ωτ sin ϕ + cos ϕ

Noticing that sin ϕ = −ωτ/
√

1 + ω2τ2 and cos ϕ = 1/
√

1 + ω2τ2,
we can substitute this into the expression above and find:

⇒ A =
V◦√

ω2τ2 + 1

which is exactly the result we derived earlier.
It is always of course reassuring to obtain the same result two

different ways. The ability to solve such a problem more than one
way can be a major help in making sure you have the right solution.

The “Easy” Approach: Complex Numbers

Both of the approaches to the problem described above require the
use of hard-to-remember trig identities and significant amounts of
algebra. There is an easier way, but it requires the use of complex
numbers.

An Aside on Linearity

First of all, it is important to notice that in linear systems of equations
involving purely real and purely imaginary numbers as coefficients,
the imaginary and real terms are never “mixed,” i.e. the solutions
would never involve multiplying a real expression by an imaginary
one.

This observation is a consequence of superposition and homogene-
ity,

f (jx) = j f (x)

and

f (a + jb) = f (a) + f (jb)

thus

f (a + jb) = f (a) + j f (b)
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.
This means that we can add any imaginary sources (bj above) to a

problem, and it has no affect as long as we neglect the imaginary part
of the solution at the end.4 4 For a reexplanation on this topic,

see https://youtu.be/dTWVG2FYP8s

Sinusoidal Steady State: Linearity Saves
the Day

Why would anyone want to go to this trouble? Because it mas-
sively simplifies the algebra while making the solution easier to un-
derstand and interpret. Specifically, it allows us to express sinusoidal
functions in the exp(jωt) form, which makes solutions to differential
equations easier, and then take the real part at the end to find the
solution.

Approach

The key insight is that we can add an imaginary source to the prob-
lem without affecting the real solution:

−
+jV◦ sin(ωt)

−
+V◦ cos(ωt)

R

C
+

−
vC

which then allows us to express the problem as the real part of the
following circuit:

−
+V◦ exp(jωt)

R

C
+

−
vC

This formulation modifies the equation of motion minimally (the
right hand side becomes an exponential, and we change vC to ṽC to
remind ourselves that we are dealing with the complex version of the
problem now),

dṽC

dt
+

ṽC

τ
=

V◦
τ

exp(jωt).

inviting a trial solution of the form:

ṽC(t) = A exp(st).

https://youtu.be/dTWVG2FYP8s
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expecting that now A and s would naturally be complex numbers.
Applying this trial form, we find s = jω and also get an equation:

jωA +
A
τ

=
V◦
τ

.

which we can solve for A,

A =
V◦/τ

jω + 1
τ

=
V◦

jωτ + 1
.

As expected A is complex.
Remembering that only the real part of this is the solution, we can

write the solution as :

vC = ℜ [ṽC]

= |A| cos (ωt +∠A)

=

∣∣∣∣∣ V◦√
(ω2τ2 + 1)

∣∣∣∣∣ cos (ωt + atan(−ωτ)) .

We have thus recovered our earlier result with much less algebra
and some improvement of intuition.

Conclusion

In these notes, we have shown a variety of approaches to solving
sinusoidal steady-state systems. with these methods we were able
to show that capacitor circuits can be thought of as affecting a input
signal depending on the frequency of that signal.

The first two approaches used real numbers along with trigono-
metric identities and a fair bit of algebra. The last approach instead
used complex numbers and linearity to solve the problem with less
algebra but more of a conceptual challenge.

Test Yourself

Without looking back at the notes, can you write down the differen-
tial equation that describes this system?

Try to convert the solution in the form of cos and phase back to
the sum of a sin and cos term.

Make sure you can convert between a complex number expressed
as a fraction to a complex number in polar notation.

Glossary

Amplitude Maximum deviation of a sinusoidal signal from its aver-
age value.
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Cycles per Second Unit of frequency equivalent to hertz. Sometimes
used when describing circular or rotary motion.

Equation of Motion Differential equation describing evolution of a
state parameter such as current or voltage.

Frequency Number of repetitions of a signal that occur in a given unit
time.

Offset Constant value added to or subtracted from a sinusoidal or
other periodic signal.

Period Length of time between repetitions of a signal.

Relative Phase Time translation of a sinusoidal signal relative to a
presumed cosine centered at time zero. Often simply called phase.

Radial Frequency Number of radians that elapse per unit time when
a signal is considered to be representative of rotary motion. In
this case 2π radians elapse every cycle, or period, of the signal.
Typically represented by the Greek letter ω (omega).

Sinusoidal Signal A signal that varies sinusoidally with time, typically
carrying some information in its amplitude and its phase.

Sinusoidal Steady-State A sinusoidal signal that returns to its starting
position every period.

Transient Temporal response of a system to a disturbance such as a
step or the removal of a source. The decay of a voltage or current
in a first-order step response is an example of a transient.
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