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Sinusoidal Steady State and the Impedance Method

You have probably seen impedance in some context before, perhaps
in a physics class, or in some discussions in an introductory lab class.
If so, you may remember the key formulas and perhaps how to apply
them, but here I’d like to not only explain how to use impedance as
a concept, but more importantly exactly why it works. That way, you
will know when you can apply this method (namely, when consider-
ing sinusoidal steady state signals), and when it is not appropriate. In more advanced classes, more general

use of the impedance method is often
taught by using transform methods to
map non sinusoidal signals into their
sinusoidal components. However, for
now we will only use the impedance
method when dealing with sinusoidal
signals.

We will first spend quite some time understanding and justifying
the impedance method rigorously. This is important, because it is
easy to misuse this method, and a rigorous understanding here can
help with confusion in other contexts. However, if you want to get
quickly to how to apply the method, you can skip to section

Superposition of Sinusoidal Sources

Remember that this simple mathematical relation between sinusoids
was only true for linear transformations, i.e. for transformations
that satisfy superposition and homogeneity. The question is, are
capacitors and inductors linear?

Well, let’s see first if superposition applies. If we find two solu-
tions that satisfy the element relation of a capacitor or inductor, will
their sum also satisfy the relation? Let’s try it out for two pairs of
variables, i1, v1 and i2, v2 that both satisfy the constitutive relation for
a capacitor:

i1 = C
dv1

dt
,

i2 = C
dv2

dt

⇒ i1 + i2 = C
d(v1 + v2)

dt
.

(1)

So yes, superposition applies to capacitors (and similarly, to induc-
tors).

Now let’s check if homogeneity applies:

αi1 = C
d(αv)

dt
. (2)

So yes, homogeneity also applies. So, by the same arguments we
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used to claim that resistors were linear, these devices are also linear.
This realization can be surprising until one fully understands the
meaning of linearity as it is used in circuit theory.

What is perhaps even more surprising is that the principle of
homogeneity applies even if the scaling factor α is imaginary. For
a linear function, then if f (x) = y then f ( j x) = j y and also
f (a + j b) = ay + j by. FIXME:in next draft expand this to include
superposition, and perhaps move to sidenote. That means that mathemat-
ically (although of course not physically), you can work with circuits
with complex source strengths and parameter values, and they can be
analyzed just as you are accustomed to for real source strengths and
parameter values.

The remarkable consequence of this fact is that if we have a real
circuit that we need to analyze, we can add any imaginary sources
we want to it (obviously without breaking the existing topology), and
then simply take the real part of the answer to solve for the original
(real) circuit. I.e. in linear circuits, there is no "mixing" of real and
imaginary components. Solving a problem with complex sources is
like solving two unrelated problems, one with real sources and one
with imaginary sources. The real and imaginary parts of the solution
give the answers to each of these problems respectively.FIXME:maybe
create appendix where full circuit version is shown graphically.

The process of adding imaginary sources basically just looks like
transforming the original source into one with a complex drive (be-
cause current sources in parallel and voltage sources in series simply
add). This process is illustrated in the sketch below for a current
source: a complex voltage source can be similarly constructed by
adding adding an imaginary source in series with a real one.

Ie j ωt I cos ωt j I sin ωt

ĩ = Ie j ωt = I cos(ωt) + j I sin(ωt) (3)

This equation basically means that we can model a cosinusoidal
current source as the real part of a complex current source. It is im-
portant to remember that the actual current source has no complex
character, we’re just taking advantage of the mathematical trick that
because of linearity, we can add any complex value to a source and it
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can’t change the real component of the system (by superposition). So
at the end of the calculation, we just take the real part of the solution
and we have our problem solved.

Just being able to add imaginary sources to a problem without
breaking it does not imply that would be useful. So why would one
want to use an imaginary source? Why go to the trouble of adding
still more sources to an already complicated problem? Surprisingly,
adding these imaginary sources makes the problem much easier to
solve, as long as it is done correctly. The trick is to add sources in
series with the voltage sources (and in parallel with the current
sources) so that the combined sources looks like a single complex
source. When this is done properly for sinusoidal signals, this single
source appears to have a strength that rotates continuously in a circu-
lar path on the complex plane. We will see that this makes life much
easier for us down the road—it permits us to use the impedance
method.

The Impedance Method

The reason complex drives are useful is illustrated immediately by
considering a network consisting of an inductor in series with a cur-
rent source.

ĩL=Ie j ωt L

+

−

ṽL

ĩL

Calculating the complex voltage ṽL and its relation to the complex
current through the inductor ĩL, we can save a lot of trouble and
effort relative to solving a full differential equation. Instead, we start
with the constitutive relation for an inductor,

ṽL = L
dĩL
dt

(4)

and plug in our expression for ĩL. From this we see that

ṽL = L
dIe j ωt

dt
= L j ωIe j ωt

= j ωLĩL
= ZL ĩL.

(5)

where we’ve introduced a new symbol here ZL = j ωL which stands
for the impedance of the inductor. Notice the relation we just derived
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relates a voltage and a current, just like Ohm’s law! So ZL must have
units of resistance (Ω).

We can simplify (5) even further by realizing that both sides of
the equation ṽL = ZL ĩL include a time dependence that can be
canceled out. We need to separate out this time dependence so we
define complex oscillation amplitudes Vℓ and Iℓ, so that one can write
ṽL = Vℓe j ωt and ĩL = Iℓe j ωt, in which case Ṽℓe j ωt = ZL Iℓe j ωt. The
resulting simplified equation just relates complex values with no time
dependence:

Vℓ = ZL Iℓ. (6)

That was the key step. The time dependence cancels out, resulting
in a problem with no time dependence. But we already know how
to solve problems that don’t include a time dependence, so we’ve
reduced the problem to one that we’ve solved before.

Because this looks so much like Ohm’s law, we can now redraw
our circuit, replacing the sinusoidal drive and the inductor which
much simpler DC components (admittedly with complex values for
parameter strengths now).

I j ωL

where we have used the symbol to represent an impedance,
real, imaginary, or complex. Basically, these elements act as resistors,
but we don’t draw resistors in their spot so that we remember that
they have complex parameter values. The disadvantage is that now
when you solve the circuit for the real voltage (across the inductor,
say), you need to remember to multiply by the time-dependent term
and take the real part of the result, so the voltage vL is not Iℓ j ωL as
you might expect, but rather

vL(t) = ℜ[ j ωLIℓe j ωt]

= | j ωLIℓ| cos (ωt +∠( j ωLIℓ)))

= ωLIℓ cos (ωt + π/2) .

(7)

A very similar derivation (with a voltage source and a capacitor
rather than a current source and an inductor) can be used to show
that the impedance of a capacitor is ZC = 1/( j ωC).

Going from Phasors to Measurable Quantitities

We can visualize how the impedance picture relates to the original
circuit by reversing the steps we took to get to it, i.e. by taking the
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phasor (complex quantity for voltage or current) and then multiply-
ing by ejωt and finally taking the real part, as illustrated below:

This same process can be repeated for all the components we have
used so far, current and voltage sources, resistors, capacitors, and
inductors.

Furthermore, because of the direct correspondence to resistors
(impedances act like complex resistors), impedances can be combined
just like resistances:
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Bottom Line

The basic approach one should thus take when solving impedcance
problems is thus:

1. Verify that all the sources are indeed in the sinusoidal state, cen-
tered around zero. If not, use superposition to break up the prob-
lem so that at least one part of it is purely in the sinusoidal steady
state.

2. Convert the SSS problem to a DC problem with complex sources
and impedances replacing the other components.

3. Analyze for the complex DC branch variables (phasors) of interest.

4. If you’re asked for a current or voltage, compute the actual branch
variables of interest by multiplying the result from (3) by ejωt and
taking the real part.

5. Perform additional analysis of any non-linear expressions (i.e.
power) as needed.

Filter Example

So let’s now think about a simple circuit used as a filter. A filter is a
component with an input and output that provides a different scaling
of the input sinusoidal signal (in amplitude and phase) depending
on the frequency. They are used extensively to reduce noise, enhance
signal strength, or modify a circuit’s phase. The circuit schematic is:
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vIN

R

L
+

−
vOUT

although it is not typically drawn this way. I drew it like this to em-
phasize the similarity to a voltage divider. It is more typically drawn
as shown in the margin, which is topologically identical to the figure
above.

+

−

vIN

R

L

+

−

vOUT

In the past, we typically have asked students to determine an
output value from a circuit. But for a filter, we want the user to be
able to vary the input, which will vary the output. So instead we
now want only to find a way to relate the output to the input, i.e. to
determine how the output depends on the input.

Because the circuit is linear, both input and output will be sinu-
soidal waves with the same frequency. And because any two sinu-
soidal waves can be related by the ratio of their amplitudes and the
difference of their phases, all we need to do is determine which com-
plex number relates the two.

This complex number depends on frequency, and thus is called a
function (because its value is a function of ω). When plotted vs. ω it
helps provide an intuitive picture of the performance of the filter. We
call this function the transfer function because it characterizes the
transfer of a signal from the input to the output.

Now that we understand better how and why the impedance
method works, we don’t need to go through the full justification for
it each time we use it. We can more or less just follow a recipe of a
sequence of steps:

1. Redraw the circuit as one that consists only of complex impedances
and DC complex sources;

−
+ Vin

ZR=R

ZL= j ωL
+

−
Vout

2. Analyze the circuit using or DC analysis methods (in this case it is
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a simple voltage divider).

Ṽout =
ZL

ZL + ZR
Ṽin

=
j ωL

(R + j ωL)
Ṽin

= H( j ω)Ṽin,

(8)

where we’ve introduces the symbol H( j ω) = Ṽout/Ṽin for the
transfer function of the system.

3. Analyze the transfer function’s frequency dependence. In this
case, we see that as ω → 0, H( j ω) → j ωL/R so as ω gets smaller,
the voltage will drop. This means low frequency signals will be
filtered. Conversely, as ω → ∞, H( j ω) → 1, thus the output
just reflects the input, with no change in phase or amplitude. This
means that high frequency signals will pass through... we call this
a High Pass Filter.

Power and Impedance

When calculating power in the sinusoidal steady state, one has to
remember that the complex amplitudes are not actual currents and
votlages, and power is not linear relative to i and v. Thus, one has to
return to first principles.

Consider the sinusoidal steady-state element

Z

+ −
Va

Ia

Now recall that p = i · v and i = ℜ[Iaejωt], and v = ℜ[Vaejωt].

⇒ p = ℜ[|Ia|]ej(ωt+∠Ia)] · ℜ[|Va|]ej(ωt+∠Va)

⇒ = |IaVa| cos(ωt +∠Ia) cos(ωt∠Va)

Because the system is in sinusoidal steady state, we can calculate
the temporal average by integrating across a period:

< p >t=
1
T

∫ T

0
|IaVa| cos(ωt +∠Ia) cos(ωt +∠Va)dt

Where the notation < p >t denotes the average with respect to
time. We can also use the fact that Va = ZIa and so ∠Va = ∠Z +∠Ia

to write
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< p >t=
1
T

∫ T

0
|IaVa| cos(ωt +∠Ia) cos(ωt +∠Z +∠Ia)dt

But we can ignore the ∠Ia term, because we are integrating over
a full period, so it cannot affect the average value. We are thus left
with:

< p >t=
1
T

∫ T

0
|IaVa| cos(ωt) cos(ωt +∠Z)dt.

Noting that cos (ωt +∠Z) = cos(ωt) cos(ωt+∠Z)− sin(ωt) sin(∠Z),
and also noting that

∫ T
0 cos(ωt) sin(ωt)dt = 0 we can show that

< p >t =
1
T

∫ T

0
|IaVa| cos2(ωt) cos(∠Z)dt

=
|IaVa|

2
cos(∠Z).

Notice that for capacitors and inductors, ∠Z = −π/2 and +π/2
respectively, therefore < p >t= 0 for these devices, as expected.
However, for resistors < p >t= |IaVa|/2 because for these devices
∠Z = 0 (because the impedance is real).

Some exercises for yourself to see if you know this material

Don’t refer to notes when working these exercises–try to answer
these questions just with paper and pencil in front of you.

1. Starting with the constitutive law of an inductor, derive its impedance.

2. Starting with the constitutive law of a capacitor, derive its impedance.

3. Create a random topology of one resistor, one capacitor, and one
sinusoidal source and solve for the transfer function using the
source as the input, and any other circuit variable as the output.

Some Useful Videos to Watch

If you’re looking for some weekend YouTube to watch that can also
educate you about this subject, check out a few videos I’ve made:

1. https://youtu.be/y5OePLS_R8I Impedance Explained

2. https://youtu.be/GwXenS7BUHo Solving for a voltage using
impedance analysis. High-pass inductive filter example.

https://youtu.be/y5OePLS_R8I
https://youtu.be/GwXenS7BUHo
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Glossary

Complex Amplitude Amplitude of a sinusoidal signal (current or
voltage) including an assumed imaginary term. The magnitude of
the complex amplitude will equal the magnitude of the real signal
amplitude, and the argument of the complex amplitude will be
the phase of the real signal relative to assumed zero phase for an
unshifted pure cosine.

Filter Circuit designed to block or attenuate certain frequencies from
a signal while allowing other frequencies to pass through.

High-Pass Filter Circuit designed to block or attenuate low fre-
quencies from a signal while allowing higher frequencies to pass
through.

Impedance Ratio of complex voltage to complex current going through
a device.

Transfer Function Gain of a circuit with sinusoidal drive as a function
of j ω.
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