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Filters are the means by which signals are processed in electronic cir-
cuits. In advanced classes, filters can be designed to perform very so-
phisticated operations—the kinds of filters in your cell phones, for in-
stance, can extract tiny signals from under huge noise backgrounds—
but at this point our goal is to learn how to do things like remove
unwanted noise or enhance transmission of desired signal ranges.

Input and Output

Transfer functions and filters are always considered in the context
of an input and and output. The signal is being processed in some
way by the circuit. Often, then, input will come from a source, or
a Thevenin-equivalent network of some sort, but it can also be left
unspecified, as just a dangling port (typically on the left hand side of
the page).
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Figure 1: We assume that Vin has zero
output impedance and Vout has infinite
input impedance for our treatment
here. More typically, circuits are de-
signed to have 50Ω input and output
impedances by convention, and that is
factored into the designs.

Now recall that vIN , the actual sinusoidal steady state voltage, is
going to be expressed as the real part of a complex time-dependent
phasor:

vIN = |Vin| cos(ωt + ϕ)

= ℜ[Vinejωt]

vOUT = Vout cos(ωt + ϕ + ∆ϕ)

= ℜ[Voutejωt]

Vout = H(jω)︸ ︷︷ ︸
transfer function

Vin

(1)

Figure shows a simplified transfer function relating input to out-
put, but a more detailed diagram might be helpful, shown below:
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Now for a concrete example, suppose you are asked to find the
transfer function for the filter circuit given below.
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vIN = Vin cos (ωt)

= ℜ
[
Vinejωt

]

vOUT = ℜ
[
Voutejωt

]
= |Vout| cos (ωt +∠Vout) .

(2)

The transfer function is H(jω) where Vout = H(jω)Vin. We’re just
writing this all out with the real parts here because the concepts from
sinusoidal steady state are still new. In practice, this is all implicit in
the statement of the problem. 1 1 We’ve chosen Vin to be real because

we have the liberty of selecting an
arbitrary input phase... our circuit will
then modify by adding to that phase
(or subtracting from it). If we had a
multi-stage filter, or some other way
in which the problem was posed, we
might not be at that liberty, in which
case we would have a complex value for
Vin.

The concept of a transfer function is applicable in situations where
the inputs are all in a sinusoidal steady state, i.e. any transients (e.g.
impulse or step responses) have decayed away long since. In such a
scenario, the circuit elements are all linear, which means we should
proceed by modeling this circuit as a DC circuit.



6.002 lecture notes: first-order filters and transfer functions 3

Which we can redraw in the impedance picture, replacing input
and output voltages with the corresponding impedance phasors:

⇒ Vout =

(
Zc

R + ZC

)
︸ ︷︷ ︸

H(jω)

Vin

⇒ H(jω) =
1/(jωC)

R + 1/(jωC)

=
1

RC

(
1

jω + 1
RC

)
, and, if we define ωb ≡ 1/RC,

=
ωb

jω + ωb
.

(3)

In principle, we’re done, but the problem is that the complex num-
ber itself has no meaning in the real world... it is the amplitude and
phase of it that carry the meaning. The amplitude tells us about the
scaling of the magnitude of the signal, the phase about its phase shift.
So we should calculate the magnitude and phase of H.

|H(jω)| = |Vout|
|Vin|

=
1

RC
1√

ω2 + ω2
b

, which gives the amplitude scaling.

∠H(jω) = ∠Vout − Vin ≡ ∆ϕ, which gives the phase shift.

= ∠
(

1
ωb

1
jω + ωb

)
= ∠

1
jω + ωb

= −∠(jω + ωb)

= −atan2(ω, ωb)
(4)

where we have used the notation atan2 to define the arctangent
function unambiguously. atan2(y,x) is defined such that the first
argument represents the y (or imaginary) coordinate, and the second
argument represents the x (or real) coordinate. This removes any
possible ambiguity in which quadrant the angle resides in.
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Figure 2: Illustration of the phasor
corresponding to H(jω).
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Interpreting phase of the transfer function

What does the phase of the transfer function mean? It tells you how
the input and output phasors are related in angle. So examine the
sketch below:

We need to remember that both the amplitude and phase of the
transfer-function vary with frequency. But not all frequencies are
created equal...

What are the important frequency ranges?

It is useful to look at approximations to the transfer function in the
limit of large frequency, small frequency, or intermediate frequency.
When performing approximations, however, one must always be
careful to ask “small or large with respect to what?” In this case the
denominator of the transfer function contains a clue as to how to
choose the limits of the frequency. The denominator is proportional
to jω + ωb which has a purely imaginary component jω and a purely
real component ωb (remember ωb = 1/RC)2. If ω >> ωb, the 2 It is no coincidence that RC appears

here, and also in the natural step
response of this circuit–in fact, the fre-
quency and time domain responses of
systems are deeply linked. Essentially,
ωb is just the reciprocal of the natural
time constant τ = RC of the system.

denominator will be almost entirely imaginary, while if ω << ωb it
will be almost entirely real. In between, when ω ∼ ωb, the complex
characteristic of the denominator may be important. It may be hard
to visualize what is meant by “almost real” or “almost imaginary.”
Imagine what the phasor of a number like 100 + 0.1j looks like? It
will point along the real axis... similarly 0.1 + 100j will point along
the imaginary axis. This is what we mean by “almost real” or “almost
imaginary.”

From this argument, we will look at three frequency ranges: (1)
ω << ωb; (2) ω = ωb; and (3) ω >> ωb.

The sketch below shows the denominator phasors at these fre-
quencies:
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We can similarly study the amplitude of the transfer function:

|H(jω)| = | ωb
jω + ωb

|

=
ωb√

ω2 + ω2
b


≈ 1, ω << ωb(signal passes)

= 1√
2

, ω = ωb

≈ ωb
ω , ω >> ωb(signal blocked)

Note in the high-frequency case, the magnitude is extremely small
(because ωb >> ω. Thus in this limit, the signal is blocked. We thus
call this filer a “low pass” filter, because low frequency signals pass
through while high frequency signals are blocked.

To calculate the phase shift similarly, we can calculate

∠H(jω) = ∠
(

ωb
jω + ωb

)
= ∠ωb −∠(jω + ωb)

= 0 − atan2(ω, ωb)
≈ 0, ω << ωb

= −π/4, ω = ωb

≈ −π/2, ω >> ωb

We can use these results to make a table that nicely illustrates the
response of the system at low, intermediate, and high frequencies.

ω << ωb ω = ωb ω >> ωb

H 1 − jω/ωb 1/(1 + j) −ωbj/ω

|H| 1 1/
√

2 ωb
ω

log |H| 0 −0.15 log ωb − log ω

20 log |H| 0 −3dB −20 log ω + 20 log ωb

∠H 0 −π/4 −π/2
Somewhat randomly (it may appear), we take the log of the mag-

nitude of the transfer function, and then multiply it by 20 in this
table. The reason for this comes from a combination of an accident of
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history (the factor of 20), and because the transfer function can vary
over such an enormous range (10 orders of magnitude is not unheard
of).3 3 The factor of 20 (rather than a factor

of 10, which would seem more natu-
ral at first) comes about because the
unit of “bels” on which it is based is
log10(Pout/Pin) i.e. of a transfer func-
tion expressed as a power ratio. But
P ∝ V2, thus when we take the log of
the power expressed as a voltage, we
have to add an extra factor of two, so
that we get the same transfer function
when we use either power or voltage to
express it.

The traditional way to understand and visualize a filter response
is with a “Bode plot.” A Bode plot compares the transfer function
(expressed in decibels, i.e. 20 log H) as a function of the frequency
plotted on a log axis. By inspection of the high and low frequency
terms in the table above, one can see that in these limits the axes are
linear, with slopes of 0 (for the low-frequency limit in this case) and
20 (in the high-frequency limit). The precise units of the slopes are
decibels (the unit of the y axis) per decade (because the x axis multi-
plies frequency by 10 for each unit it progress along the logarithm).
The filter slope is thus −20 decibels per decade at high frequencies.
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Bode plot Figure 3: Bode amplitude plot where
we have chosen ωb = 2π · 1000 Hz (note,
ωb normally has units of rad/sec, thus
we have converted to Hz here). Notice
that at the break frequency, the phase
shift is −π/4 exactly half way between
the two extremes.

Some exercises for yourself to see if you know this material

(1) There are only a few possible simple filters out there, voltage
source driving a voltage divider topologies with resister and either
an inductor or a capacitor (alternating location), current source driv-
ing a current divider topology with resistor and either a capacitor or
inductor... try to work out the types of filters each of these circuits
are.

(2) Try to memorize the following decibel values... they’re used a
lot
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Figure 4: Bode phase plot where we
have chosen ωb = 1000 Hz.

|H| 20 log |H|
1 0 dB

10 20 dB
0.1 -20 dB√

2 3 dB
1/

√
2 ≈ 0.7 -3 dB
2 6 dB

1/2 -6 dB

Some Useful Videos to Watch

If you’re looking for some weekend youtube to watch that can also
educate you about this subject, check out a few videos I’ve made:

(1) https://youtu.be/yd9COpkdlNMUnderstanding Slopes of Bode
Plots and Filter Responses

(2) https://youtu.be/QP1-9c7tDygHigh-pass filter transfer func-
tion and Bode Plots

https://youtu.be/yd9COpkdlNM
https://youtu.be/QP1-9c7tDyg
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