6.002 - Lecture 11B

Filtering:

- Review Simple Objectives (LPF , HPF , BPF , BSF)
- Review Simple Synthesis
- LC Resonators
- Tesla Coil

Simple Filtering Objectives
\n
$$
V_{in}e^{j\omega t}
$$
 $\overline{F_{i}Her} \rightarrow \hat{V}_{out}e^{j\omega t}$
\n $|\vec{v}_{out}/\vec{v}_{in}|$ $|\vec{v}_{out}/\vec{v}_{in}|$
\n $|\vec{v}_{out}/\vec{v}_{in}|$ $|\vec{v}_{out}/\vec{v}_{in}|$
\n $|\vec{v}_{out}/\vec{v}_{in}|$ $|\vec{v}_{out}/\vec{v}_{in}|$
\n $|\vec{v}_{out}/\vec{v}_{in}|$ $|\vec{v}_{out}/\vec{v}_{in}|$

Simple Filtering Synthesis

Parallel LC Resonator

Series LC Resonator

Theory: Series-LC BPF

Theory: Series-LC BPF

Theory: Series-LC BPF

RLC Demos

Demo: Series-LC BPF L = 0.1 H ; C = 0.25 μ F ; R = 100 Ω $(2\pi\sqrt{LC})^{-1} = 1$ kHz ; $\sqrt{L/C} = 632$ Ω

L = 0.1 H ; C = 0.25 μ F ; R = 1 k Ω $(2\pi\sqrt{LC})^{-1}$ = 1 kHz ; $\sqrt{L/C}$ = 632 Ω Demo: Series-LC BPF

Theory: Parallel-LC BPF

Theory: Parallel-LC BPF

$$
Low \omega : |\frac{\hat{V}_{out}}{\hat{V}_{in}}| \approx \frac{\omega L}{R} = \frac{\omega \pi c}{Q}
$$

High $\omega : |\frac{\hat{V}_{out}}{\hat{V}_{in}}| \approx \frac{1}{\omega RC} = \frac{1}{\omega \pi cQ}$

Assumptotes cross at which I with value $1a$.

Theory: Parallel-LC BPF

$$
\frac{1}{\sqrt{2}u} = \phi = \frac{3\omega L/R}{1 - \omega^{2} LC + j\omega L/R}
$$

= $\frac{j\omega L/R}{(1 - \omega^{2} LC - j\omega L/R)^{2}}$
= $\frac{j\omega L/R}{(1 - \omega^{2} LC)^{2} + (\omega L/R)^{2}}$
= $\frac{j\omega L/R}{(1 - \omega^{2} LC) + \omega L/R}$

≘ N

Demo: Parallel-LC BPF

L = 0.1 H ; C = 0.25 μF ; R = 10 kΩ $(2\pi\sqrt{LC})^{-1} = 1$ kHz ; R/ $\sqrt{L/C} = 16$

Numerical: Parallel-LC BPF

LC Comb Filter

$$
Z_{1} = \text{Open at } \omega = \frac{1}{\sqrt{\ln 2}}
$$
\n
$$
Z_{2} = \text{Open at } \omega = \frac{1}{\sqrt{\ln 2}} \text{ or } \omega = \frac{1}{\sqrt{\ln
$$

Demo: LC Comb Filter

L₁ = 0.1 H ; C₁ = 0.25 μ F ; f₁= 1 kHz L₂ = 0.01 H ; C₂ = 0.022 μ F ; f₂= 10 kHz $R = 10 k\Omega$; Q1 = Q2 = 16

Theory: Series-LC BSF

Demo: Series-LC BSF

L = 0.1 H ; C = 0.25 μ F ; R = 100 Ω $(2\pi\sqrt{LC})^{-1} = 1$ kHz ; $\sqrt{L/C}$ / R = 6.3

Note that the notch does not go to zero due to the parasitic series resistance of the inductor.

Numerical: Series-LC BSF

Resonators

Peak voltage limited by parasitic resistances.

Applications include:

- · Capacitive shouts along inductive $power - grid$ transmission lines;
- . Tesla coil (dual tuned resonator).

Demo: Tesla Coil

The Tesla Coil employs two coupled resonators, with both resonators tuned to the same frequency.

The resistors protect the transformer. At 60 Hz, the transformer fill up the capacitor. When the capacitor voltage gets high enough, the spark gap sparks, and becomes a short allowing the LC resonator to oscillate, driving the rest of the Tesla coil.

Demo: Tesla Coil

