6.002 - Lecture 12

First-Order Driven Response

- RC and RL Step Responses
- Long- and Short-Time Behavior
- Superposition: ZIR and ZSR

RC Network

RL Network

General First-Order Dynamics

 $RC \frac{dV_c}{dt} + V_c = Ri$ $V_c(t=0) \text{ given}$

L(t≥0) given

 $\frac{L}{R} \frac{di_{L}}{dt} + \dot{l}_{L} = \frac{V}{R}$ $\dot{l}_{L} (t=0) \text{ given}$ $V(t \ge 0) \text{ given}$

General problem:

τ dx/dt + X = y X(t=0) given Y(t≥0) given T = Time constant

First-Order Dynamic Response

 $T \frac{dx}{dt} + \chi = y \quad \chi(0) \text{ Given } y(t) \text{ Given for } t \ge 0$

 $\chi(t) = \frac{Particular}{Solution} + \frac{Homogeneous}{Solution} = \chi_{p}(t) + \chi_{H}(t)$

Particular solution satisfies the differential equation, but not necessarily the initial condition

Homogeneous solution adjusts the total solution to satisfy the initial condition

Let \dot{X} denote dX/dt and substitute $X = X_{P} + X_{H}$

Defined Match

$$T(\dot{\chi}_{p} + \dot{\chi}_{H}) + (\chi_{p} + \chi_{H}) = y + 0$$

$$T(\dot{\chi}_{p} + \dot{\chi}_{H}) + (\chi_{p} + \chi_{H}) = y + 0$$

$$T(\dot{\chi}_{p} + \chi_{H}) + (\chi_{p} + \chi_{H}) = y + 0$$

$$T(\dot{\chi}_{h} + \chi_{H}) = 0$$

$$T(\dot{\chi}_$$

First-Order Step Response

 $T \frac{dx}{dt} + X = y \quad \chi(0) \text{ Given } y(t) = Y \text{ for } t \ge 0$ $\chi_{P}(t) = Y \cdots \text{ By inspection}$ $\chi(t) = Y + (\chi(0) - Y) e^{-t/T} \qquad [1]$ $= Y(1 - e^{-t/T}) + \chi(0) e^{-t/T} \qquad [2]$ $[1] \Rightarrow \chi(t) \text{ decays expontially from } \chi_{(0)} \text{ to } Y$ $[2] \Rightarrow \chi(c) \text{ disappears expontially } (ZIR) \text{ while}$

Y appears expontially (25R)

2IR/25R = Zero input/state response

RC Network Step Response

 $V_{c}(t) = V_{c}(0)e^{-t/RC} + RI(1-e^{-t/RC})$

 $i_{c} = C dV_{c}/dt = (I - V_{c}(0)/R)e^{-t/RC}$

- In the absence of infinite i_c, v_c(t) is continuous. Thus, for t << RC, v_c(t) ≈ v_c(0), rising linearly at first.
- For $t \rightarrow \infty$, the network reaches steady state with $d/dt \rightarrow 0$. Thus, $i_c \rightarrow 0$, the capacitor acts as an open circuit, and v_c settles to $v_c(t) \rightarrow RI$.

RL Network Step Response

 $i_{L}(t) = i_{L}(0)e^{-t/(L/R)} + (V/R)(1-e^{-t/(L/R)})$

 $V_{L} = L di_{L}/dt = (V - Ri_{L}(0))e^{-t/(L/R)}$

- In the absence of infinite v_L, i_L(t) is continuous. Thus, for t << L/R, i_L(t) ≈ i_L(0), rising linearly at first.
- For $t \rightarrow \infty$, the network reaches steady state with $d/dt \rightarrow 0$. Thus, $v_{L} \rightarrow 0$, the inductor acts as an short circuit (wire), and i_{L} settles to $i_{L}(t) \rightarrow V/R$.