6.002 - Lecture 15

Energy Processing

- Energy-Efficient Delivery
- Simple Power Electronics
- Pulse Width Modulation
- First-Order Review
- Time Averaging
- Audio Example

Challenge: Efficient Energy Delivery

What goes here for greatest efficiency?

Complexities:

- Voltage mismatch
- Time-varying supply voltage
- Time-varying load voltage and power demand
- Varying load characteristics

Efficiency Benefits:

- Reduced energy cost
- Simplified thermal management

Design and Operation:

- Repurpose the amplifier studied earlier.
- Design the amplifier such that min{v_s} ≥ max {v_L = R_L * i_L}.
- What if the design is not possible?
- Choose $v_{Control}$ to provide i_L and v_L .

Energy Efficiency

The Challenge Revisited

This "device" must experience the Voltage $V_s - R_L i_L$, and so must dissipate the power $(V_s - R_L i_L) \dot{L} = \frac{if}{L} it$ is dissipative.

What about non-dissipative devices?

* Capacitors

* Inductors

* Switches (Via Transistors)

An Alternative Energy Processor

Operate transistors as switches

Cyclic Steady-State Operation

* What is the average current? * What is the current ripple?

* What is the dynamic behavior?

Inductor-Resistor Network Review

$$V_{M}(t) \stackrel{(t)}{\leftarrow} I_{i}(t) \stackrel{$$

$$V_{\rm M} = 0$$
 tro \Rightarrow $i(t) = i(0)e$
 $i(0)$ Given

 $V_{M} = V_{M} t \ge 0$ $i(t) = i(0)e^{-t}(t + \frac{V_{M}}{R}(1 - e^{-t}/2))$

Intuitive Operation Preview

Cyclic Steady-State: Averages

 $KVL \Rightarrow L \frac{di_{L}(t)}{dt} + Ri_{L}(t) = V_{M}(t)$ Average $\Rightarrow \overline{X} = \frac{1}{T} \int_{T} X(s) ds \dots$ for any tt-T

Average
$$KVL \Rightarrow \pm \int_{t-T}^{t} \left(L \frac{di_{L}(s)}{ds} + Ri(s) \right) ds = \pm \int_{t-T}^{t} V_{M}(s) ds$$

$$\Rightarrow \frac{L}{T} (\lambda(t) - \lambda(t - \tau)) + R \frac{1}{2} = \overline{V}_{M}$$

Steady State $\Rightarrow i(t) = i(t-\tau) \dots$ for every t

$$\Rightarrow \overline{\lambda}_{L} = \frac{\overline{V_{M}}}{R_{L}} = \frac{V_{S} D}{R_{L}}$$

$$PWM \quad Control \quad Variable$$

 $\Rightarrow \overline{v}_{L} = R_{L}\overline{\lambda}_{L} = V_{S}D$

Cyclic Steady-State: Ripples

Define $\Delta i_{L} = peak - peak ripple$ M1 On $\Rightarrow V_{s} \approx \frac{\Delta l_{L}}{DT} L + R \overline{l}_{L}$ M2 On \Rightarrow O $\approx \frac{-\Delta L}{(I-D)T}L + R\overline{L}$ Difference $\Rightarrow V_{S} \approx \frac{L\Delta iL}{T} \left[\frac{1}{D} + \frac{1}{1-D} \right] = \frac{L\Delta iL}{TD(1-N)}$ $\Rightarrow \Delta i_{L} \approx \frac{V_{s} T D(1-D)}{I}$

Minimize ripple:

- * maximize L ... expensive
- * maximize + ... switching losses

Dynamics

Hoving Average
$$\Rightarrow \overline{\chi}(t) = \frac{1}{T} \int_{t-T}^{T} \chi(s) ds$$

$$\frac{d\overline{\chi}(t)}{dt} = \frac{\chi(t) - \chi(t-T)}{T} = \frac{d\overline{\chi}(t)}{dt}$$
Dynamics $\Rightarrow \perp \frac{d\overline{\chi}(t)}{dt} + \frac{R}{L}L(t) = \overline{U}_{M}(t)$

$$= D(t) \overline{U}_{S}$$

$$i_{L}(t)$$

$$T = \frac{L}{R_{L}}$$

$$T = \frac{L}{R_{L}}$$

Implementation: PWM

Implementation: Power Electronics

