6.002 - Lecture 18

Driven RLC Networks

Second-Order Networks
Network Equivalence
Homogeneous Response
Particular Response
Total Response



Driven Series RLC Networks
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Driven Parallel RLC Networks
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These sources must all be voltage sources for the
remaining devices to interact with each other.



v-1 Equivalence
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Equivalence Example
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The two networks behate identically
when I=C dV/dt.

All series RLC networks have the same homogeneous/natural
response, due to the common network obtained with the
sources set to zero. Similarly, all parallel RLC networks have the
same homogeneous/natural response. The only difference from
network to network within each set is the nature of the drive.



Homogeneous Response
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Common Form: d&*x/dt? +

x = Decay Rate
Q = Quality Factor
S = Damptng Factor
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de/dt+w2x = 0

t) = Undamped Natural Frequency
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s = Damped Natural Frequency



Analysis: Series RLC Network

Note: ot =R/2L and w, = I/{LC

vit) = v gt (A sin(wyt) + A cos(wt))

Particulor

where v 15 chosen to match V.
Particulor



Step Response

let V=V, with
v(O) =0 and t(0) = Cdu/dt(0)=0

A good choice for v, is v, =V, so that
vl) = V, + e (A sin(wgt) + A cos(w,t))

v =0 = A,=-V, so that

vit) =V, + g % (A sin(wyt) - Vocos(wgt))

L) = -Coe™? (A sin(wt) - Vocos(wt))
+Cuw, gt (A cos(wyt) + Vosin(w,t))

U0V =0 » A, = -(x/w )V, so that
vit) =V, - Vc,e'“ ({x/o0 ) sin(wyt) + cos(w,t))
L(1) = xCV, k ({ox/eo ) sin(wt) + cos (w,t))
-w,CV, e %1 ({ox/6s )Y cos (W t) — sin(wi))
= (w:/wd\CVne'“J‘ sin(w;t)



Electrical Variable

Step Response

R=6.03Q;L=01H;C=107pF;V=2V

Voltage - 1 V/Div
Current - 2 maA/Div
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Impulse Response

The impulse response Ls the natural,

or homogeneous, response driven by initial
conditions set wp by the impulse. To determine
he initial conditions, integrate the differential
equatons acrgss the impulse.

let V = ASL) with
v(0Y=0 and t(07) = Cdv/dt(o) = O

O+
[(lvrdt? + 2ocdu/dt » w2v = w2AB)) dt -
32

du/dt(0") - du/dt(07) + 2xlu(0%) - v(07) = WA
ZERD Z2ERD

O+
ftCdvrdt = 1)dt —— v(0®-v(0) =0
a- ZERD
Theretore v(0%) = 0 and dv/dt(0*) = w2\

so0 that v = (u:!\/wd\e""fsln(mdt) onred
L) = (A/L) e = (cos(wyt) - (/e ) sintagt))

The voltage impulse falls entirely dcross the
[nductor causing L to step to A/L.



R=6.03Q;L=0.1H;C=1.07 pF; A=0.5mVs

Electrical Variable
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