6.002 - Lecture 19

Boost Converter

- Power Electronics
- Energy Processing
- Boost Converter Example
- LC Network Review
- LC Network Application

Power Electronics

"Power electronics" does not necessarily mean "powerful electronics". Rather it refers to electronics designed to process power/energy as opposed to electronics that process signals/information.

Power electronics concerns include:

- efficiency and temperature rise;
- power density;
- regulation of output voltage or current; and
- response bandwidth in the presence of source and load variations.

As a consequence of the concern for efficiency, power electronics involve (to first order) only ideally lossless devices:

- capacitors and inductors acting as energy stores;
- transistors and diodes acting as switches to direct energy flow;
- transformers for isolation and voltage and current transformation.

To learn more, consider 6.131 and/or 6.334.

Boost Converter?

Low Voltage

- Batteries
- Energy Harvesters
- RF
- Solar Concerns
- Thermal
- Vibration
- Digital Systems

Power Electronic Boost Converter

- High efficiency
- Good regulation
- Wide bandwidth

High Voltage

- Actuators
- Sensors
- Communication
- Distribution

6.002 Ultrasound Boost Converter

Kodak Camera

Single-Use Camera

Simplified Camera Flash Circuit

Flash Trigger

Typical Operation: 1.5 V © Battery
300 V e capacitor
$10 \mathrm{kV} @$ Igniter

Voltage Pump (Boost Converter)

State I S_{1} On s_{2} off

State II S_{1} off $\mathrm{S}_{2} \mathrm{O}_{n}$

State I

$$
\begin{aligned}
& -T \leq t \leq 0 \\
& i_{L}(-T)=0 \\
& v_{c}(-T)=\text { Given }
\end{aligned}
$$

$$
\begin{aligned}
& V=V_{L}=L \frac{d i_{L}}{d t} \quad \Rightarrow \quad i_{L}(t)=\frac{V}{L}(t+T) \\
& O=i_{C}=C \frac{d V_{c}}{d t} \quad \Rightarrow \quad V_{C}(t)=V_{C}(-T)
\end{aligned}
$$

State II

$$
\begin{aligned}
& 0 \leq t \leq \text { Did Turn Off } \\
& i_{L}(0)=\text { Given } \\
& V_{c}(0)=\text { Given }
\end{aligned}
$$

$$
\begin{aligned}
& V=L C \frac{d^{2} V_{C}}{d t^{2}}+V_{C} \quad \& \quad i_{C}=C \frac{d V_{C}}{d t} \\
& V_{C}=V+A \sin \left(\frac{t}{\sqrt{L C}}\right)+B \cos \left(\frac{t}{\sqrt{L C}}\right) \\
& i_{L}=C \frac{d V_{C}}{d t}=\sqrt{\frac{C}{L}} A \operatorname{Cos}\left(\frac{t}{\sqrt{L C}}\right)-\sqrt{\frac{C}{L}} B \sin \left(\frac{t}{\sqrt{L C}}\right) \\
& V_{C}=V+\sqrt{\frac{L}{C}} i_{L}(0) \sin \left(\frac{t}{\sqrt{L C}}\right)+\left(N_{C}(0)-V\right) \operatorname{Cos}\left(\frac{t}{\sqrt{L C}}\right) \\
& i_{L}=i_{L}(0) \operatorname{Cos}\left(\frac{t}{\sqrt{L C}}\right)-\sqrt{\frac{C}{L}}\left(V_{C}(0)-V\right) \sin \left(\frac{t}{\sqrt{L C}}\right)
\end{aligned}
$$

All States Together

State II Review:

$$
\begin{aligned}
& v_{c}(t)=V+\sqrt{\left(v_{c}(0)-V\right)^{2}+\frac{L}{C} i_{L}^{2}(0)} \\
& \cos (\frac{t}{\sqrt{L C}}-\overbrace{-1}^{-1}\left(\sqrt{\frac{L}{C}} \frac{i_{L}(0)}{\left.v_{c}(0)-V\right)}\right) \\
& \mu_{L}(t)=-\sqrt{\frac{c}{L}\left(v_{c}(0)-V\right)^{2}+i_{L}^{2}(0)} \sin \left(\frac{t}{\sqrt{L C}}-\operatorname{Tan}^{-1}\left(\sqrt{\frac{L}{C}} \frac{\frac{1}{c}(0)}{v_{c}(0)-V}\right)\right)
\end{aligned}
$$

". III I II III..
(Lossless) Cycle Analysis

$$
\begin{aligned}
v_{n+1} & =V+\sqrt{\left(v_{n}-V\right)^{2}+\frac{L}{C} i_{L}^{2}(0)} \\
& =V+\sqrt{\left(v_{n}-V\right)^{2}+\frac{V^{2} T^{2}}{L C}} \\
\left(v_{n+1}-V\right)^{2} & =\left(v_{n}-V\right)^{2}+\frac{V^{2} T^{2}}{L C} \quad\left(v_{0}-V\right)^{2} \equiv 0 \\
v_{n} & =V+V \sqrt{\frac{n T^{2}}{L C}}
\end{aligned}
$$

Cycle Analysis Via Energy

Conservation: $\Delta W_{C}=-\Delta W_{B}+W_{L}$
Capacitor: $\quad \Delta W_{C}=\frac{1}{2} C v_{n+1}^{2}-\frac{1}{2} C v_{n}^{2}$
Inductor: $\quad W_{L}=\frac{1}{2} L i_{L}^{2}(0)$
Battery: $-\Delta W_{B}=\nabla \Delta Q$
Charge: $\quad \Delta Q=C v_{n+1}-C v_{n}$

$$
\begin{aligned}
& \frac{C}{2} v_{n+1}^{2}-\frac{C}{2} v_{n}^{2}=C V v_{n+1}-C \bar{V} v_{n}+\frac{L}{2} i_{L}^{2}(0) \\
& v_{n+1}^{2}-2 V v_{n+1}+V^{2}=v_{n}^{2}-2 V v_{n}+V^{2}+\frac{L}{C} i_{L}^{2}(0) \\
& \left(v_{n+1}-V\right)^{2}=\left(v_{n}-V\right)^{2}+\frac{L}{C} i_{L}^{2}(0) \quad \ldots \text { As Before! }
\end{aligned}
$$

Demo

Real Inductor

MOSFET Switching

- Transistor Rating $=50 \mathrm{~V}$
- Capacitor Rating $\geq 100 \mathrm{~V}$
- Diode Rating $\cong 100 \mathrm{~V}$
- Inductor Rating = ?

Operation

First two switching cycles

Green: S1 switch state (high = on and low = off)
Red: inductor current ($10 \mathrm{~mA} /$ division) Purple: capacitor voltage ($5 \mathrm{~V} /$ division)

Operation

First fifty switching cycles

Green: S1 switch state (high = on and low = off) Red: inductor current ($10 \mathrm{~mA} /$ division) Purple: capacitor voltage ($5 \mathrm{~V} /$ division)

Simulation

This simulation omits all losses: inductor, scope, transistor and diode.

