6.200 Circuits and Electronics

Week 6, Lecture A: Operational Amplifiers

Grab participation sheet by the door. Midterm: Tuesday after the break (info and review materials on web). No p-set this week.

Loading

Circuit design is complicated by interactions among the elements. Adding an element changes voltages and current *throughout* the circuit. For example, what happens when the switch is closed in the following circuit (effectively adding the light bulb as a new component)?

- 0. v_o and i_o stay the same
- 1. v_o decreases, i_o decreases
- 2. v_o decreases, i_o increases
- 3. v_o increases, i_o decreases
- 4. v_o increases, i_o increases
- 5. depends on the bulb's resistance

Memories...

Consider an arbitrary sensor with a small output voltage, driving a load of some kind:

What is the problem here?

Amplifiers

We could resolve this issue by building a circuit that behaves like the following, to isolate the sensor and the load (and also scale up the sensor's voltage):

Goals: $v_{\text{load}} = G \times V_{\text{s}}$, where *G* is adjustable and reliable

Operational Amplifiers

An operational amplifier ("op-amp") can be modeled^{*} as a voltage-controlled voltage source, where *k* is intentionally large (typically $\sim 10^5 - 10^7$):

* sometimes

Operational Amplifiers

What's *actually* in an op-amp? Here is a more accurate circuit model of a μ A709 op-amp:

But that's a pain...

Characterizing an Op-amp (VCVS Model)

$$v_o = k(v_+ - v_-)$$

 $i_+ = i_- = 0$

Sketch a graph of v_o versus $(v_+ - v_-)$

Supply Rails

Op-amps derive power from connections to a power supply, and the output voltage is typically constrained by that power supply:

 $V_{\rm S-} < v_o < V_{\rm S+}$

Op-Amps as Comparators

Other than the (tiny) range of $v_+ - v_-$ values where we're operating in the linear region, the op-amp's output voltage will be forced to one or the other of the supply rails, so the op-amp naturally behaves as a comparator:

Under (approximately) what conditions is the output equal to V_{CC} ? Under (approximately) what conditions is the output equal to V_{EE} ?

Check Yourself

Check Yourself

Check Yourself

